zoukankan      html  css  js  c++  java
  • 215. Kth Largest Element in an Array

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

    Example 1:

    Input: [3,2,1,5,6,4] and k = 2
    Output: 5
    

    Example 2:

    Input: [3,2,3,1,2,4,5,5,6] and k = 4
    Output: 4

    Note: 
    You may assume k is always valid, 1 ≤ k ≤ array's length.

    Approach #1: C++. [priority_queue]

    class Solution {
    public:
        int findKthLargest(vector<int>& nums, int k) {
            priority_queue<int, vector<int>, greater<int>> pq;
            
            for (int i = 0; i < nums.size(); ++i) {
                if (pq.size() <= k) pq.push(nums[i]);
                else pq.pop(), pq.push(nums[i]);
            }
            if (pq.size() > k) pq.pop();
            return pq.top();
        }
    };
    

      

    Approach #2: Java. [quick select]

    class Solution {
        public int findKthLargest(int[] nums, int k) {
            int n = nums.length;
            int p = quickSelect(nums, 0, n-1, n-k+1);
            return nums[p];
        }
        
        int quickSelect(int[] a, int lo, int hi, int k) {
            int i = lo, j = hi, pivot = a[hi];
            while (i < j) {
                if (a[i++] > pivot) swap(a, --i, --j);
            }
            
            swap(a, i, hi);
            
            int m = i - lo + 1;
            
            if (m == k) return i;
            else if (m > k) return quickSelect(a, lo, i-1, k);
            else return quickSelect(a, i+1, hi, k-m);
        }
        
        void swap(int[] a, int i, int j) {
            int tmp = a[i];
            a[i] = a[j];
            a[j] = tmp;
        }
    }
    

    Analysis;

    In this case, we swap the elements to make the array ordered. If the number of minimum elements in front of the array equal to k, then return the position at the array. Otherwise we divide the array with the pivot, if m(the elements of minimum numbers in front of the array) bigger the k, we can find the right position in the smaller numbers partion, Otherwise finding in the bigger partion.

    Approach #3: Python.

    import heapq
    class Solution(object):
        def findKthLargest(self, nums, k):
            """
            :type nums: List[int]
            :type k: int
            :rtype: int
            """
            min_heap = nums[:k]
            heapq.heapify(min_heap)
            for i in range(k, len(nums)):
                if nums[i] > min_heap[0]:
                    heapq.heappop(min_heap)
                    heapq.heappush(min_heap, nums[i])
            return min_heap[0]
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    javascript修改浏览器title方法 JS动态修改浏览器标题
    input type="checkbox" 选中传值,不选中传值的方法讲解
    关闭控制台的自动切换按钮
    mac切图
    charles
    apache
    超级经典的HTTP协议讲解
    一个很有趣的算法
    移动端网络判断
    移动端1px细线的处理
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10144648.html
Copyright © 2011-2022 走看看