zoukankan      html  css  js  c++  java
  • 215. Kth Largest Element in an Array

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

    Example 1:

    Input: [3,2,1,5,6,4] and k = 2
    Output: 5
    

    Example 2:

    Input: [3,2,3,1,2,4,5,5,6] and k = 4
    Output: 4

    Note: 
    You may assume k is always valid, 1 ≤ k ≤ array's length.

    Approach #1: C++. [priority_queue]

    class Solution {
    public:
        int findKthLargest(vector<int>& nums, int k) {
            priority_queue<int, vector<int>, greater<int>> pq;
            
            for (int i = 0; i < nums.size(); ++i) {
                if (pq.size() <= k) pq.push(nums[i]);
                else pq.pop(), pq.push(nums[i]);
            }
            if (pq.size() > k) pq.pop();
            return pq.top();
        }
    };
    

      

    Approach #2: Java. [quick select]

    class Solution {
        public int findKthLargest(int[] nums, int k) {
            int n = nums.length;
            int p = quickSelect(nums, 0, n-1, n-k+1);
            return nums[p];
        }
        
        int quickSelect(int[] a, int lo, int hi, int k) {
            int i = lo, j = hi, pivot = a[hi];
            while (i < j) {
                if (a[i++] > pivot) swap(a, --i, --j);
            }
            
            swap(a, i, hi);
            
            int m = i - lo + 1;
            
            if (m == k) return i;
            else if (m > k) return quickSelect(a, lo, i-1, k);
            else return quickSelect(a, i+1, hi, k-m);
        }
        
        void swap(int[] a, int i, int j) {
            int tmp = a[i];
            a[i] = a[j];
            a[j] = tmp;
        }
    }
    

    Analysis;

    In this case, we swap the elements to make the array ordered. If the number of minimum elements in front of the array equal to k, then return the position at the array. Otherwise we divide the array with the pivot, if m(the elements of minimum numbers in front of the array) bigger the k, we can find the right position in the smaller numbers partion, Otherwise finding in the bigger partion.

    Approach #3: Python.

    import heapq
    class Solution(object):
        def findKthLargest(self, nums, k):
            """
            :type nums: List[int]
            :type k: int
            :rtype: int
            """
            min_heap = nums[:k]
            heapq.heapify(min_heap)
            for i in range(k, len(nums)):
                if nums[i] > min_heap[0]:
                    heapq.heappop(min_heap)
                    heapq.heappush(min_heap, nums[i])
            return min_heap[0]
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    vue3.0+vite+ts项目搭建axios封装(六)
    vue3.0+vite+ts项目搭建分环境打包(四)
    vue3.0+vite+ts项目搭建初始化项目(一)
    MFC数值型关联变量和控件型关联变量
    SVN服务端、客服端安装与配置
    (转)ev4加密视频破解 ev4破解工具 ev4转mp4转换器 【无视授权密码即可转换】
    C#中的记录(record)
    C#自定义转换(implicit 或 explicit)
    C#中的隐式转换
    C#中的显式转换
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10144648.html
Copyright © 2011-2022 走看看