zoukankan      html  css  js  c++  java
  • 215. Kth Largest Element in an Array

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

    Example 1:

    Input: [3,2,1,5,6,4] and k = 2
    Output: 5
    

    Example 2:

    Input: [3,2,3,1,2,4,5,5,6] and k = 4
    Output: 4

    Note: 
    You may assume k is always valid, 1 ≤ k ≤ array's length.

    Approach #1: C++. [priority_queue]

    class Solution {
    public:
        int findKthLargest(vector<int>& nums, int k) {
            priority_queue<int, vector<int>, greater<int>> pq;
            
            for (int i = 0; i < nums.size(); ++i) {
                if (pq.size() <= k) pq.push(nums[i]);
                else pq.pop(), pq.push(nums[i]);
            }
            if (pq.size() > k) pq.pop();
            return pq.top();
        }
    };
    

      

    Approach #2: Java. [quick select]

    class Solution {
        public int findKthLargest(int[] nums, int k) {
            int n = nums.length;
            int p = quickSelect(nums, 0, n-1, n-k+1);
            return nums[p];
        }
        
        int quickSelect(int[] a, int lo, int hi, int k) {
            int i = lo, j = hi, pivot = a[hi];
            while (i < j) {
                if (a[i++] > pivot) swap(a, --i, --j);
            }
            
            swap(a, i, hi);
            
            int m = i - lo + 1;
            
            if (m == k) return i;
            else if (m > k) return quickSelect(a, lo, i-1, k);
            else return quickSelect(a, i+1, hi, k-m);
        }
        
        void swap(int[] a, int i, int j) {
            int tmp = a[i];
            a[i] = a[j];
            a[j] = tmp;
        }
    }
    

    Analysis;

    In this case, we swap the elements to make the array ordered. If the number of minimum elements in front of the array equal to k, then return the position at the array. Otherwise we divide the array with the pivot, if m(the elements of minimum numbers in front of the array) bigger the k, we can find the right position in the smaller numbers partion, Otherwise finding in the bigger partion.

    Approach #3: Python.

    import heapq
    class Solution(object):
        def findKthLargest(self, nums, k):
            """
            :type nums: List[int]
            :type k: int
            :rtype: int
            """
            min_heap = nums[:k]
            heapq.heapify(min_heap)
            for i in range(k, len(nums)):
                if nums[i] > min_heap[0]:
                    heapq.heappop(min_heap)
                    heapq.heappush(min_heap, nums[i])
            return min_heap[0]
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    单例模式及C++实现代码
    Nginx学习笔记4 源码分析
    探讨C++ 变量生命周期、栈分配方式、类内存布局、Debug和Release程序的区别2
    SVM学习资料
    11 款最好 CSS 框架
    发布Activex全过程
    Integer.parseInt(String s, int radix)方法介绍(修正版)
    Windows 各种计时函数总结(QueryPerformanceCounter可以达到微秒)
    不断摸索发现用 andy 模拟器很不错,感觉跟真机差不多
    Qt中提高sqlite的读写速度(使用事务一次性写入100万条数据)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10144648.html
Copyright © 2011-2022 走看看