zoukankan      html  css  js  c++  java
  • 215. Kth Largest Element in an Array

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

    Example 1:

    Input: [3,2,1,5,6,4] and k = 2
    Output: 5
    

    Example 2:

    Input: [3,2,3,1,2,4,5,5,6] and k = 4
    Output: 4

    Note: 
    You may assume k is always valid, 1 ≤ k ≤ array's length.

    Approach #1: C++. [priority_queue]

    class Solution {
    public:
        int findKthLargest(vector<int>& nums, int k) {
            priority_queue<int, vector<int>, greater<int>> pq;
            
            for (int i = 0; i < nums.size(); ++i) {
                if (pq.size() <= k) pq.push(nums[i]);
                else pq.pop(), pq.push(nums[i]);
            }
            if (pq.size() > k) pq.pop();
            return pq.top();
        }
    };
    

      

    Approach #2: Java. [quick select]

    class Solution {
        public int findKthLargest(int[] nums, int k) {
            int n = nums.length;
            int p = quickSelect(nums, 0, n-1, n-k+1);
            return nums[p];
        }
        
        int quickSelect(int[] a, int lo, int hi, int k) {
            int i = lo, j = hi, pivot = a[hi];
            while (i < j) {
                if (a[i++] > pivot) swap(a, --i, --j);
            }
            
            swap(a, i, hi);
            
            int m = i - lo + 1;
            
            if (m == k) return i;
            else if (m > k) return quickSelect(a, lo, i-1, k);
            else return quickSelect(a, i+1, hi, k-m);
        }
        
        void swap(int[] a, int i, int j) {
            int tmp = a[i];
            a[i] = a[j];
            a[j] = tmp;
        }
    }
    

    Analysis;

    In this case, we swap the elements to make the array ordered. If the number of minimum elements in front of the array equal to k, then return the position at the array. Otherwise we divide the array with the pivot, if m(the elements of minimum numbers in front of the array) bigger the k, we can find the right position in the smaller numbers partion, Otherwise finding in the bigger partion.

    Approach #3: Python.

    import heapq
    class Solution(object):
        def findKthLargest(self, nums, k):
            """
            :type nums: List[int]
            :type k: int
            :rtype: int
            """
            min_heap = nums[:k]
            heapq.heapify(min_heap)
            for i in range(k, len(nums)):
                if nums[i] > min_heap[0]:
                    heapq.heappop(min_heap)
                    heapq.heappush(min_heap, nums[i])
            return min_heap[0]
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    解析漏洞总结
    ssh登录日志位置
    xshell ssh连接linux时提示ssh服务器拒绝了密码
    Linux安装ssh
    Apache Shiro (Shiro-550)(cve_2016_4437)远程代码执行
    CVE-2019-1388 UAC提权复现
    CVE-2019-0708复现之旅
    Apache Flink漏洞(CVE-2020-17519)复现
    FourEye(重名免杀实践)过360
    CVE-2020-11651:SaltStack认证绕过复现
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10144648.html
Copyright © 2011-2022 走看看