zoukankan      html  css  js  c++  java
  • 502. IPO

    Suppose LeetCode will start its IPO soon. In order to sell a good price of its shares to Venture Capital, LeetCode would like to work on some projects to increase its capital before the IPO. Since it has limited resources, it can only finish at most k distinct projects before the IPO. Help LeetCode design the best way to maximize its total capital after finishing at most k distinct projects.

    You are given several projects. For each project i, it has a pure profit Pi and a minimum capital of Ci is needed to start the corresponding project. Initially, you have W capital. When you finish a project, you will obtain its pure profit and the profit will be added to your total capital.

    To sum up, pick a list of at most k distinct projects from given projects to maximize your final capital, and output your final maximized capital.

    Example 1:

    Input: k=2, W=0, Profits=[1,2,3], Capital=[0,1,1].
    
    Output: 4
    
    Explanation: Since your initial capital is 0, you can only start the project indexed 0.
                 After finishing it you will obtain profit 1 and your capital becomes 1.
                 With capital 1, you can either start the project indexed 1 or the project indexed 2.
                 Since you can choose at most 2 projects, you need to finish the project indexed 2 to get the maximum capital.
                 Therefore, output the final maximized capital, which is 0 + 1 + 3 = 4.
    

    Note:

    1. You may assume all numbers in the input are non-negative integers.
    2. The length of Profits array and Capital array will not exceed 50,000.
    3. The answer is guaranteed to fit in a 32-bit signed integer.
     

    Approach #1: C++.

    class Solution {
    public:
        int findMaximizedCapital(int k, int W, vector<int>& Profits, vector<int>& Capital) {
            priority_queue<int> pq;
            vector<pair<int, int>> temp;
            for (int i = 0; i < Capital.size(); ++i) 
                temp.push_back(make_pair(Capital[i], Profits[i]));
            sort(temp.begin(), temp.end());
            int index = 0;
            while (k--) {
                while (index < Capital.size() && temp[index].first <= W) {
                    pq.push(temp[index].second);
                    index++;
                }
                if (pq.empty()) break;
                W += pq.top();
                pq.pop();
            }
            return W;
        }
    };
    

      

    Approach #2: Java.

    class Solution {
        public int findMaximizedCapital(int k, int W, int[] Profits, int[] Capital) {
            PriorityQueue<int[]> pqCap = new PriorityQueue<>((a, b)->(a[0] - b[0]));
            PriorityQueue<int[]> pqPro = new PriorityQueue<>((a, b)->(b[1] - a[1]));
            
            for (int i = 0; i < Profits.length; ++i) {
                pqCap.add(new int[] {Capital[i], Profits[i]});
            }
            
            for (int i = 0; i < k; ++i) {
                while (!pqCap.isEmpty() && pqCap.peek()[0] <= W) {
                    pqPro.add(pqCap.poll());
                }
                
                if (pqPro.isEmpty()) break;
                
                W += pqPro.poll()[1];
            }
            
            return W;
        }
    }
    

      

    Approach #3: Python.

    class Solution(object):
        def findMaximizedCapital(self, k, W, Profits, Capital):
            """
            :type k: int
            :type W: int
            :type Profits: List[int]
            :type Capital: List[int]
            :rtype: int
            """
            heap = []
            projects = sorted(zip(Profits, Capital), key=lambda l:l[1])
            i = 0
            for _ in range(k):
                while i < len(projects) and projects[i][1] <= W:
                    heapq.heappush(heap, -projects[i][0])
                    i += 1
                if heap: W -= heapq.heappop(heap)
            return W
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    多线程的几种实现方法详解
    Java线程编程中isAlive()和join()的使用详解
    MyEclipse在不同编辑面间快速切换
    MyEclipse中设置代码块快捷键
    MyEclipse设置文件编码
    Oracle安装后遇到错误:The Network Adapter could not establish the connection
    Java中的Runtime类
    Java中接口的特点
    Java中三种常见的注释(注解) Annotation
    Java中的泛型
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10152777.html
Copyright © 2011-2022 走看看