zoukankan      html  css  js  c++  java
  • 864. Shortest Path to Get All Keys

    We are given a 2-dimensional grid"." is an empty cell, "#" is a wall, "@" is the starting point, ("a""b", ...) are keys, and ("A""B", ...) are locks.

    We start at the starting point, and one move consists of walking one space in one of the 4 cardinal directions.  We cannot walk outside the grid, or walk into a wall.  If we walk over a key, we pick it up.  We can't walk over a lock unless we have the corresponding key.

    For some 1 <= K <= 6, there is exactly one lowercase and one uppercase letter of the first K letters of the English alphabet in the grid.  This means that there is exactly one key for each lock, and one lock for each key; and also that the letters used to represent the keys and locks were chosen in the same order as the English alphabet.

    Return the lowest number of moves to acquire all keys.  If it's impossible, return -1.

    Example 1:

    Input: ["@.a.#","###.#","b.A.B"]
    Output: 8
    

    Example 2:

    Input: ["@..aA","..B#.","....b"]
    Output: 6
    

    Note:

    1. 1 <= grid.length <= 30
    2. 1 <= grid[0].length <= 30
    3. grid[i][j] contains only '.''#''@''a'-'f' and 'A'-'F'
    4. The number of keys is in [1, 6].  Each key has a different letter and opens exactly one lock.

    Approach #1: C++. [BFS]

    class Solution {
    public:
        int shortestPathAllKeys(vector<string>& grid) {
            int m = grid.size();
            int n = grid[0].size();
            queue<int> q;
            vector<vector<vector<int>>> seen(m, vector<vector<int>>(n, vector<int>(64, 0)));
            int allKeys = 0;
            
            //Init
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    const char c = grid[i][j];
                    if (c == '@') {
                        q.push((i << 16) | (j << 8));
                        seen[i][j][0] = 1;
                    } else if (c >= 'a' && c <= 'f') {
                        allKeys |= (1 << (c - 'a')); 
                    }
                }
            }
            
            int steps = 0;
            vector<int> dirs = {-1, 0, 1, 0, -1};
            
            while (!q.empty()) {
                int size = q.size();
                while (size--) {
                    int cur = q.front(); q.pop();
                    int x = cur >> 16;
                    int y = (cur >> 8) & 0xFF;
                    int keys = cur & 0xFF;
                    
                    if (keys == allKeys) return steps;
                    
                    for (int i = 0; i < 4; ++i) {
                        int xx = x + dirs[i];
                        int yy = y + dirs[i+1];
                        int curKeys = keys;
                        if (xx < 0 || xx >= m || yy < 0 || yy >= n) continue;
                        const char c = grid[xx][yy];
                        if (c == '#') continue;
                        if (c >= 'A' && c <= 'F' && !(keys & (1 << (c - 'A')))) continue;
                        if (c >= 'a' && c <= 'f') curKeys |= 1 << (c - 'a');
                        if (seen[xx][yy][curKeys]) continue;
                        seen[xx][yy][curKeys] = 1;
                        q.push((xx << 16) | (yy << 8) | curKeys);
                    }
                }
                steps++;
            }
            
            return -1;
        }
    };
    

      

    Analysis:

    seen[x][y][keys] : To store the position and the number of keys. If this state don't be traveled we can do next step, otherwise we skip this state.

    allKeys : To represent the keys which we will collect in this problem. In this problem we use six binary numbers to represent all the keys at difference bit. 

    such as : a -> 1 so it will be represented by 000001 and f -> f - 'a' = 6 so it will be represent by 100000. If we have the keys of a and f so we can use 100001 to represent that.

    queue<int> q : To simulation the BFS.

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    关于二叉树遍历的一点想法
    Mysqldump导入数据库很慢的解决办法
    javascript笔记收集
    再次讨论二叉树--如何根据先序和中序推选后序
    一道图的题目-拓扑序概念
    一道哈夫曼二叉树题目--稍微容易一点
    一道哈夫曼树的题目--好不容易
    证明二叉树节点数公式
    一道二叉树题目---顺序存储二叉树位置同层的关系
    POJ 3253 Fence Repair(贪心)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10198042.html
Copyright © 2011-2022 走看看