zoukankan      html  css  js  c++  java
  • 452. Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it's horizontal, y-coordinates don't matter and hence the x-coordinates of start and end of the diameter suffice. Start is always smaller than end. There will be at most 104 balloons.

    An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xend bursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps travelling up infinitely. The problem is to find the minimum number of arrows that must be shot to burst all balloons.

    Example:

    Input:
    [[10,16], [2,8], [1,6], [7,12]]
    
    Output:
    2
    
    Explanation:
    One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons).

    Approach #1: C++. [80ms]

    class Solution {
    public:
        int findMinArrowShots(vector<pair<int, int>>& points) {
            int size = points.size();
            if (size == 0) return 0;
            sort(points.begin(), points.end());
            int start = points[0].first;
            int end = points[0].second;
            int ans = 1;
            for (int i = 1; i < size; ++i) {
                if (points[i].first > end) {
                    ans++;
                    start = points[i].first;
                    end = points[i].second;
                    continue;
                }
                if (points[i].first > start) start = points[i].first;
                if (points[i].second < end) end = points[i].second;
            }
            return ans;
        }
    };
    

      

    Approach #2: C++. [24ms]

    static int x=[](){
        ios_base::sync_with_stdio(false);
        cin.tie(nullptr);
        return 0;
    }();
    
    class Solution {
    public:
        int findMinArrowShots(vector<pair<int, int>> &points) {
            if (points.size() == 0 || points.size() == 1)
                return points.size();
            sort(points.begin(), points.end(), [](auto &p1, auto &p2) {
                return (p1.second <= p2.second);
            });
            int right = INT_MIN, res = 0;
            for (auto x : points) {
                if (x.first <= right) continue;
                right = x.second;
                res++;
            }
            return res;
        }
    };
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    再谈C#装箱和拆箱操作
    C#装箱与拆箱总结
    大话设计模式
    创建ASP.NET Webservice
    Lambada和linq查询数据库的比较
    设置VS2015背景图片(转载)
    windows 下使用Linux 子系统-安装.net core 环境
    .net core 3.1 ef Migrations 使用 CLI 数据迁移及同步
    linq 大数据 sql 查询及分页优化
    数据迁移最快方式,多线程并行执行 Sql插入
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10211634.html
Copyright © 2011-2022 走看看