zoukankan      html  css  js  c++  java
  • 413. Arithmetic Slices

    A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

    For example, these are arithmetic sequence:

    1, 3, 5, 7, 9
    7, 7, 7, 7
    3, -1, -5, -9

    The following sequence is not arithmetic.

    1, 1, 2, 5, 7

    A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

    A slice (P, Q) of array A is called arithmetic if the sequence:
    A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

    The function should return the number of arithmetic slices in the array A.

    Example:

    A = [1, 2, 3, 4]
    
    return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.

    Approach #1: 

    class Solution {
    public:
        int numberOfArithmeticSlices(vector<int>& A) {
            int size = A.size();
            int ans = 0;
            if (size < 3) return ans;
            vector<int> B(size-1, 0);
            
            for (int i = 1; i < size; ++i) 
                B[i-1] = A[i] - A[i-1];
            
            for (int i = 0; i < B.size(); ) {
                int j = i;
                while (j + 1 < B.size() && B[i] == B[j+1]) ++j;
                int k = j - i + 1;
                if (k >= 2) ans += k * (k - 1) / 2;
                i = j + 1;
            }
            
            return ans;
        }
    };
    

      

    Approach #2: DP. 

    public class Solution {
        public int numberOfArithmeticSlices(int[] A) {
            int[] dp = new int[A.length];
            int sum = 0;
            for (int i = 2; i < dp.length; i++) {
                if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
                    dp[i] = 1 + dp[i - 1];
                    sum += dp[i];
                }
            }
            return sum;
        }
    }
    

      

    Approach #3: constant space DP. 

    public class Solution {
        public int numberOfArithmeticSlices(int[] A) {
            int dp = 0;
            int sum = 0;
            for (int i = 2; i < A.length; i++) {
                if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
                    dp = 1 + dp;
                    sum += dp;
                } else
                    dp = 0;
            }
            return sum;
        }
    }
    

      

    Approach #4: Formula.

    public class Solution {
        public int numberOfArithmeticSlices(int[] A) {
            int count = 0;
            int sum = 0;
            for (int i = 2; i < A.length; i++) {
                if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
                    count++;
                } else {
                    sum += (count + 1) * (count) / 2;
                    count = 0;
                }
            }
            return sum += count * (count + 1) / 2;
        }
    }
    

      

    Analysis:

    https://leetcode.com/problems/arithmetic-slices/solution/

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    亚像素显示详解
    一文看懂显示关键材料之彩色滤光片(Color Filter)
    Android Camera2 Opengles2.0 实时滤镜(冷暖色/放大镜/模糊/美颜)
    Android Camera2 预览,拍照,人脸检测并实时展现
    Camera2点击对焦实现2
    关于Android Camera2 API 的自动对焦的坑
    Camera2点击对焦实现
    Android 新老两代 Camera API 大起底
    Android Camera2 参数调节关键字翻译集合,常用关键字解析
    MediaCodec在Android视频硬解码组件的应用
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10403924.html
Copyright © 2011-2022 走看看