zoukankan      html  css  js  c++  java
  • 413. Arithmetic Slices

    A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

    For example, these are arithmetic sequence:

    1, 3, 5, 7, 9
    7, 7, 7, 7
    3, -1, -5, -9

    The following sequence is not arithmetic.

    1, 1, 2, 5, 7

    A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

    A slice (P, Q) of array A is called arithmetic if the sequence:
    A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

    The function should return the number of arithmetic slices in the array A.

    Example:

    A = [1, 2, 3, 4]
    
    return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.

    Approach #1: 

    class Solution {
    public:
        int numberOfArithmeticSlices(vector<int>& A) {
            int size = A.size();
            int ans = 0;
            if (size < 3) return ans;
            vector<int> B(size-1, 0);
            
            for (int i = 1; i < size; ++i) 
                B[i-1] = A[i] - A[i-1];
            
            for (int i = 0; i < B.size(); ) {
                int j = i;
                while (j + 1 < B.size() && B[i] == B[j+1]) ++j;
                int k = j - i + 1;
                if (k >= 2) ans += k * (k - 1) / 2;
                i = j + 1;
            }
            
            return ans;
        }
    };
    

      

    Approach #2: DP. 

    public class Solution {
        public int numberOfArithmeticSlices(int[] A) {
            int[] dp = new int[A.length];
            int sum = 0;
            for (int i = 2; i < dp.length; i++) {
                if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
                    dp[i] = 1 + dp[i - 1];
                    sum += dp[i];
                }
            }
            return sum;
        }
    }
    

      

    Approach #3: constant space DP. 

    public class Solution {
        public int numberOfArithmeticSlices(int[] A) {
            int dp = 0;
            int sum = 0;
            for (int i = 2; i < A.length; i++) {
                if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
                    dp = 1 + dp;
                    sum += dp;
                } else
                    dp = 0;
            }
            return sum;
        }
    }
    

      

    Approach #4: Formula.

    public class Solution {
        public int numberOfArithmeticSlices(int[] A) {
            int count = 0;
            int sum = 0;
            for (int i = 2; i < A.length; i++) {
                if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
                    count++;
                } else {
                    sum += (count + 1) * (count) / 2;
                    count = 0;
                }
            }
            return sum += count * (count + 1) / 2;
        }
    }
    

      

    Analysis:

    https://leetcode.com/problems/arithmetic-slices/solution/

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    深入类的方法
    泛型集合
    深入C#数据类型
    深入.net框架
    错题
    详解Python Graphql
    深入理解分布式调度框架TBSchedule及源码分析
    30分钟闲置服务器建站(gitlab为例)
    Webpack开发指南
    mybatis-generator
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10403924.html
Copyright © 2011-2022 走看看