zoukankan      html  css  js  c++  java
  • 689. Maximum Sum of 3 Non-Overlapping Subarrays

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum.

    Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.

    Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.

    Example:

    Input: [1,2,1,2,6,7,5,1], 2
    Output: [0, 3, 5]
    Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
    We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.

    Note:

    • nums.length will be between 1 and 20000.
    • nums[i] will be between 1 and 65535.
    • k will be between 1 and floor(nums.length / 3).

    Approach #1: DP. [C++]

    class Solution {
    public:
        vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
            int len = nums.size();
            vector<int> sum = {0}, posLeft(len, 0), posRight(len, len-k);
            for (int i : nums) sum.push_back(sum.back()+i);
            for (int i = k, total = sum[k] - sum[0]; i < len; ++i) {
                if (sum[i+1] - sum[i+1-k] > total) {
                    total = sum[i+1] - sum[i+1-k];
                    posLeft[i] = i + 1 -k;
                } else 
                    posLeft[i] = posLeft[i-1];
            }
            
            for (int i = len-k-1, total = sum[len] - sum[len-k]; i >= 0; --i) {
                if (sum[i+k] - sum[i] > total) {
                    total = sum[i+k] - sum[i];
                    posRight[i] = i;
                } else 
                    posRight[i] = posRight[i+1];
            }
            
            int maxsum = 0;
            vector<int> ans;
            for (int i = k; i <= len-2*k; ++i) {
                int l = posLeft[i-1], r = posRight[i+k];
                int tot = (sum[i+k] - sum[i]) + (sum[l+k] - sum[l]) + (sum[r+k] - sum[r]);
                if (tot > maxsum) {
                    maxsum = tot;
                    ans = {l, i, r};
                }
            }
            
            return ans;
        }
    };
    

      

    Analysis:

    The question asks for three non-overlapping intervals with maximum sum of all 3 intervals. If the middle interval is [i, i+k-1], where k <= i <= n-2k, the left intervals. If the middle interval is [i, i+k-1], where k <= i <= n - 2k, the left interval has to be in subrange [0, i-1], ans the right interval is from subrange [i+k, n-1].

    So the following solution is based on DP.

    posLeft[i] is the starting index for the left interval in range [0, i];

    posRight[i] is the strating index for the right interval in range [i, n-1];

    Then we test every possible strating index og middle interval, i.e. k <= i <= n-2k, ans we can get the corresponding left and right max sum intervals easily from DP. and the run time is O(n).

    Caution. In order to get lexicgraphical smallest order, when there are tow intervals with equal max sum, always select the left most one. So in the code. the is condition is ">=" for right interval due to backward searching, and ">" for left interval. 

    Reference:

    https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/discuss/108231/C%2B%2BJava-DP-with-explanation-O(n)

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Mybatis Plus3.4.0打印SQL至控制台
    234 saltstack安装配置与使用
    CentOS7.9二进制方式安装mysql5.7
    查锁杀锁
    Oracle搭建DG
    MySQL 恢复
    数据库克隆(克隆的主机只需要安装软件不需要安装实例)
    MySQL单表恢复
    Properties实现文件存储
    大易之磁盘操作
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10524974.html
Copyright © 2011-2022 走看看