Given a square array of integersA
, we want the minimum sum of a falling path throughA
.A falling path starts at any element in the first row, and chooses one element from each row. The next row's choice must be in a column that is different from the previous row's column by at most one.
Example 1:
Input: [[1,2,3],[4,5,6],[7,8,9]] Output: 12 Explanation: The possible falling paths are:
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
[2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
[3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
The falling path with the smallest sum is
[1,4,7]
, so the answer is12
.
Note:
1 <= A.length == A[0].length <= 100
-100 <= A[i][j] <= 100
Approath #1: Bottom to Top. [C++]
class Solution { public int minFallingPathSum(int[][] A) { int l = A.length; int[][] dp = new int[l+1][l+1]; for (int i = 0; i < l; ++i) for (int j = 0; j < l; ++j) dp[i][j] = A[i][j]; for (int i = l-2; i >= 0; --i) { for (int j = 0; j < l; ++j) { int left = j > 0 ? dp[i+1][j-1] : Integer.MAX_VALUE; int right = j < l-1 ? dp[i+1][j+1] : Integer.MAX_VALUE; int down = dp[i+1][j]; dp[i][j] += Math.min(left, Math.min(down, right)); // System.out.print("dp[" + i + "][" + j + "]= " + dp[i][j] + " "); } // System.out.println(); } int ans = Integer.MAX_VALUE; for (int i = 0; i < l; ++i) ans = Math.min(ans, dp[0][i]); return ans; } }
Analysis:
Solving this problem using the thought of 'bottom to top', we calculate the minimum sum using dp[i][j] = dp[i][j] + min(left, right, down).
Finally, we can find the answer at the first row.