zoukankan      html  css  js  c++  java
  • 975. Odd Even Jump

    You are given an integer array A.  From some starting index, you can make a series of jumps.  The (1st, 3rd, 5th, ...) jumps in the series are called odd numbered jumps, and the (2nd, 4th, 6th, ...) jumps in the series are called even numbered jumps.

    You may from index i jump forward to index j (with i < j) in the following way:

    • During odd numbered jumps (ie. jumps 1, 3, 5, ...), you jump to the index j such that A[i] <= A[j] and A[j] is the smallest possible value.  If there are multiple such indexes j, you can only jump to the smallest such index j.
    • During even numbered jumps (ie. jumps 2, 4, 6, ...), you jump to the index j such that A[i] >= A[j] and A[j] is the largest possible value.  If there are multiple such indexes j, you can only jump to the smallest such index j.
    • (It may be the case that for some index i, there are no legal jumps.)

    A starting index is good if, starting from that index, you can reach the end of the array (index A.length - 1) by jumping some number of times (possibly 0 or more than once.)

    Return the number of good starting indexes.

    Example 1:

    Input: [10,13,12,14,15]
    Output: 2
    Explanation: 
    From starting index i = 0, we can jump to i = 2 (since A[2] is the smallest among A[1], A[2], A[3], A[4] that is greater or equal to A[0]), then we can't jump any more.
    From starting index i = 1 and i = 2, we can jump to i = 3, then we can't jump any more.
    From starting index i = 3, we can jump to i = 4, so we've reached the end.
    From starting index i = 4, we've reached the end already.
    In total, there are 2 different starting indexes (i = 3, i = 4) where we can reach the end with some number of jumps.
    

    Example 2:

    Input: [2,3,1,1,4]
    Output: 3
    Explanation: 
    From starting index i = 0, we make jumps to i = 1, i = 2, i = 3:
    
    During our 1st jump (odd numbered), we first jump to i = 1 because A[1] is the smallest value in (A[1], A[2], A[3], A[4]) that is greater than or equal to A[0].
    
    During our 2nd jump (even numbered), we jump from i = 1 to i = 2 because A[2] is the largest value in (A[2], A[3], A[4]) that is less than or equal to A[1].  A[3] is also the largest value, but 2 is a smaller index, so we can only jump to i = 2 and not i = 3.
    
    During our 3rd jump (odd numbered), we jump from i = 2 to i = 3 because A[3] is the smallest value in (A[3], A[4]) that is greater than or equal to A[2].
    
    We can't jump from i = 3 to i = 4, so the starting index i = 0 is not good.
    
    In a similar manner, we can deduce that:
    From starting index i = 1, we jump to i = 4, so we reach the end.
    From starting index i = 2, we jump to i = 3, and then we can't jump anymore.
    From starting index i = 3, we jump to i = 4, so we reach the end.
    From starting index i = 4, we are already at the end.
    In total, there are 3 different starting indexes (i = 1, i = 3, i = 4) where we can reach the end with some number of jumps.
    

    Example 3:

    Input: [5,1,3,4,2]
    Output: 3
    Explanation: 
    We can reach the end from starting indexes 1, 2, and 4.

    Note:

    1. 1 <= A.length <= 20000
    2. 0 <= A[i] < 100000

    Approach: #1: DP + Binary search. [C++]

    class Solution {
    public:
        int oddEvenJumps(vector<int>& A) {
            const int n = A.size();
            vector<vector<int>> dp(n+1, vector<int>(2, 0));
            dp[n-1][0] = dp[n-1][1] = 1;
            map<int, int> m;
            m[A[n-1]] = n - 1;
            int ans = 1;
            for (int i = n-2; i >= 0; --i) {
                auto u = m.lower_bound(A[i]);
                if (u != m.end()) {
                    int idx = u->second;
                    dp[i][1] = dp[idx][0];
                }
                auto d = m.upper_bound(A[i]);
                if (d != m.begin()) {
                    int idx = prev(d)->second;
                    dp[i][0] = dp[idx][1];
                }
                if (dp[i][1] == 1) ++ans;
                m[A[i]] = i;
            }
            return ans;
        }
    };
    

      

    Approach #2: DP. [Java]

    class Solution {
        public int oddEvenJumps(int[] A) {
            int n = A.length, res = 1;
            boolean[] higher = new boolean[n], lower = new boolean[n];
            higher[n-1] = lower[n-1] = true;
            TreeMap<Integer, Integer> map = new TreeMap<>();
            map.put(A[n-1], n-1);
            
            for (int i = n-2; i >= 0; --i) {
                Map.Entry hi = map.ceilingEntry(A[i]), lo = map.floorEntry(A[i]);
                if (hi != null) higher[i] = lower[(int)hi.getValue()];
                if (lo != null) lower[i] = higher[(int)lo.getValue()];
                if (higher[i]) ++res;
                map.put(A[i], i);
            }
            
            return res;
        }
    }
    

      

    Analysis:

    Odd jump: find the smallest value greater than self(up)

    Even jump: find the largest value smaller than self(down)

    map<int, int> -> min index of the given value

    dp[i][1] : can reach end starting with a up jump

    dp[i][0] : can reach end starting with a down jump

    Start from the (n-2)th element, find a valid up jump index j (lower_bound), and find a valid down jump index k (prev(upper_bound)).

    dp[i][1] = dp[j][0]; // next jump will be odd (down)

    dp[i][0] = dp[j][1]; // next jump will be even (up)

    ans = sum(dp[*][1])

    Time Complexity: O(nlogn)

    Space Complexity: O(n)

    Reference:

    https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-975-odd-even-jump/

    https://blog.csdn.net/yaomingyang/article/details/78748130

    http://www.cplusplus.com/reference/iterator/prev/

    https://docs.oracle.com/javase/8/docs/api/java/util/Map.Entry.html

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    JS表格分页组件:fupage的设计思路和详细使用方法(未来考虑开源,争取在2015年)
    《The Swift Programming Language》的笔记-第28页
    JavaScript基础总纲
    HTML基础总纲
    个人KPI制定
    软件测试中常用语
    测试计划
    软件性能测试的几种方法(三)
    影响软件性能的因素(二)
    性能测试的重要意义(一)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10616237.html
Copyright © 2011-2022 走看看