zoukankan      html  css  js  c++  java
  • 918. Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.

    Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)

    Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)

    Example 1:

    Input: [1,-2,3,-2]
    Output: 3
    Explanation: Subarray [3] has maximum sum 3
    

    Example 2:

    Input: [5,-3,5]
    Output: 10
    Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
    

    Example 3:

    Input: [3,-1,2,-1]
    Output: 4
    Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
    

    Example 4:

    Input: [3,-2,2,-3]
    Output: 3
    Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
    

    Example 5:

    Input: [-2,-3,-1]
    Output: -1
    Explanation: Subarray [-1] has maximum sum -1

    Note:

    1. -30000 <= A[i] <= 30000
    2. 1 <= A.length <= 30000

    Approach #1: Array. [Java]

    class Solution {
        public int maxSubarraySumCircular(int[] A) {
            int curMax = 0, sumMax = -30000, 
                curMin = 0, sumMin = 30000, total = 0;
            for (int i = 0; i < A.length; ++i) {
                curMax = Math.max(curMax + A[i], A[i]);
                sumMax = Math.max(sumMax, curMax);
                curMin = Math.min(curMin + A[i], A[i]);
                sumMin = Math.min(curMin, sumMin);
                total += A[i];
            }
            return sumMax > 0 ? Math.max(sumMax, total - sumMin) : sumMax;
        }
    }
    

      

    Analysis:

    There are two case.

    The first is that the subarray take only a middle part, and we know how to find the max subarray sum.

    The second is that the subarray take a part of head array and a part of tail array.

    We can transfer this case to the first one.

    The maximum result equals to the total sum minus the minimum subarray sum.

    Here is a diagram by @mototix:

    So the max subarray cricular sum equals to 

    max(the max subarray sum, the total sum - the min subarray sum)

    Corner case:

    Just one to pay attention:

    If all number are negative, maxSum = max(A) and minSum = sum(A). In this case, max(maxSum, total - minSum) = 0, which means the sum of an empty subarray. According to the deacription, We need to return the max(A), instead of sum of an empty subarray. So we return the maxSum to handle this corner case.

    Complexity:

    One pass, time O(N).

    No extra space, space O(1)

    Reference:

    https://leetcode.com/problems/maximum-sum-circular-subarray/discuss/178422/One-Pass

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    HDU5171 GTY's birthday gift —— 矩阵快速幂
    UVA10870 Recurrences —— 矩阵快速幂
    HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
    UVA11551 Experienced Endeavour —— 矩阵快速幂
    D6 I
    亲和串
    Kmp 算法模板 C
    Buy the Ticket
    寒假D3 A Find the Lost Sock
    寒假 D3 D Modular Inverse
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10693125.html
Copyright © 2011-2022 走看看