zoukankan      html  css  js  c++  java
  • 1007. Minimum Domino Rotations For Equal Row

    In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino.  (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)

    We may rotate the i-th domino, so that A[i] and B[i] swap values.

    Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same.

    If it cannot be done, return -1.

    Example 1:

    Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
    Output: 2
    Explanation: 
    The first figure represents the dominoes as given by A and B: before we do any rotations.
    If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.
    

    Example 2:

    Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
    Output: -1
    Explanation: 
    In this case, it is not possible to rotate the dominoes to make one row of values equal.

    Note:

    1. 1 <= A[i], B[i] <= 6
    2. 2 <= A.length == B.length <= 20000

    Approach #1: [Java]

    class Solution {
        public int minDominoRotations(int[] A, int[] B) {
            int n = A.length;
            for (int i = 0, a = 0, b = 0; i < n && (A[i] == A[0] || B[i] == A[0]); ++i) {
                if (A[i] != A[0]) a++;
                if (B[i] != A[0]) b++;
                if (i == n-1) return Math.min(a, b);
            }
            for (int i = 0, a = 0, b = 0; i < n && (A[i] == B[0] || B[i] == B[0]); ++i) {
                if (A[i] != B[0]) a++;
                if (B[i] != B[0]) b++;
                if (i == n-1) return Math.min(a, b);
            }
            return -1;
        }
    }
    

      

    Analysis:

    1. try A[0]

    2. try B[0]

    3. return -1;

    one observation is that if A[0] and B[0] are all work, the result will be the same.

    Approach #2. HashSet. [Java]

    class Solution {
        public int minDominoRotations(int[] A, int[] B) {
            int n = A.length;
            HashSet<Integer> set = new HashSet<>(Arrays.asList(1, 2, 3, 4, 5, 6));
            int[] countA = new int[7], countB = new int[7];
            for (int i = 0; i < n; ++i) {
                set.retainAll(new HashSet<>(Arrays.asList(A[i], B[i])));
                countA[A[i]]++;
                countB[B[i]]++;
            }
            for (int s : set) return Math.min(n - countA[s], n - countB[s]);
            return -1;
        }
    }
    

      

    Analysis:

    Find intersection s of {A[i], B[i]}.

    s.size() == 0: no possible reslut.

    s.size() == 1: one and only one reslut.

    s.size() == 2: it means all dominoes are [a, b] or [b, a], try either one.

    s.size() > 2: impossible. 

    Reference:

    https://www.geeksforgeeks.org/arrays-aslist-method-in-java-with-examples/

    https://www.geeksforgeeks.org/set-retainall-method-in-java-with-example/

    https://leetcode.com/problems/minimum-domino-rotations-for-equal-row/discuss/252242/JavaC%2B%2BPython-Different-Ideas

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    对C++类的继承和派生的理解
    排序算法 之 归并排序
    排序算法 之 冒泡排序
    排序算法 之 选择排序
    排序算法 之 插入排序
    排序算法 之 快速排序
    进程和线程
    C++ 之 强制转换
    C++ 之 智能指针
    C++ STL 之 分配器(allocator)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10700628.html
Copyright © 2011-2022 走看看