zoukankan      html  css  js  c++  java
  • 1007. Minimum Domino Rotations For Equal Row

    In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino.  (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)

    We may rotate the i-th domino, so that A[i] and B[i] swap values.

    Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same.

    If it cannot be done, return -1.

    Example 1:

    Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
    Output: 2
    Explanation: 
    The first figure represents the dominoes as given by A and B: before we do any rotations.
    If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.
    

    Example 2:

    Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
    Output: -1
    Explanation: 
    In this case, it is not possible to rotate the dominoes to make one row of values equal.

    Note:

    1. 1 <= A[i], B[i] <= 6
    2. 2 <= A.length == B.length <= 20000

    Approach #1: [Java]

    class Solution {
        public int minDominoRotations(int[] A, int[] B) {
            int n = A.length;
            for (int i = 0, a = 0, b = 0; i < n && (A[i] == A[0] || B[i] == A[0]); ++i) {
                if (A[i] != A[0]) a++;
                if (B[i] != A[0]) b++;
                if (i == n-1) return Math.min(a, b);
            }
            for (int i = 0, a = 0, b = 0; i < n && (A[i] == B[0] || B[i] == B[0]); ++i) {
                if (A[i] != B[0]) a++;
                if (B[i] != B[0]) b++;
                if (i == n-1) return Math.min(a, b);
            }
            return -1;
        }
    }
    

      

    Analysis:

    1. try A[0]

    2. try B[0]

    3. return -1;

    one observation is that if A[0] and B[0] are all work, the result will be the same.

    Approach #2. HashSet. [Java]

    class Solution {
        public int minDominoRotations(int[] A, int[] B) {
            int n = A.length;
            HashSet<Integer> set = new HashSet<>(Arrays.asList(1, 2, 3, 4, 5, 6));
            int[] countA = new int[7], countB = new int[7];
            for (int i = 0; i < n; ++i) {
                set.retainAll(new HashSet<>(Arrays.asList(A[i], B[i])));
                countA[A[i]]++;
                countB[B[i]]++;
            }
            for (int s : set) return Math.min(n - countA[s], n - countB[s]);
            return -1;
        }
    }
    

      

    Analysis:

    Find intersection s of {A[i], B[i]}.

    s.size() == 0: no possible reslut.

    s.size() == 1: one and only one reslut.

    s.size() == 2: it means all dominoes are [a, b] or [b, a], try either one.

    s.size() > 2: impossible. 

    Reference:

    https://www.geeksforgeeks.org/arrays-aslist-method-in-java-with-examples/

    https://www.geeksforgeeks.org/set-retainall-method-in-java-with-example/

    https://leetcode.com/problems/minimum-domino-rotations-for-equal-row/discuss/252242/JavaC%2B%2BPython-Different-Ideas

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    关键字static
    关键字const有什么含义?
    关于目标
    B/B+树的初步理解(一)
    优先队列(priority_queue)
    哨兵的作用
    数学笑话集(一)

    排序算法小结(一)
    KMP算法
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10700628.html
Copyright © 2011-2022 走看看