Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these points, with sides not necessarily parallel to the x and y axes.
If there isn't any rectangle, return 0.
Example 1:
Input: [[1,2],[2,1],[1,0],[0,1]] Output: 2.00000 Explanation: The minimum area rectangle occurs at [1,2],[2,1],[1,0],[0,1], with an area of 2.
Example 2:
Input: [[0,1],[2,1],[1,1],[1,0],[2,0]] Output: 1.00000 Explanation: The minimum area rectangle occurs at [1,0],[1,1],[2,1],[2,0], with an area of 1.
Example 3:
Input: [[0,3],[1,2],[3,1],[1,3],[2,1]] Output: 0 Explanation: There is no possible rectangle to form from these points.
Example 4:
Input: [[3,1],[1,1],[0,1],[2,1],[3,3],[3,2],[0,2],[2,3]] Output: 2.00000 Explanation: The minimum area rectangle occurs at [2,1],[2,3],[3,3],[3,1], with an area of 2.
Note:
1 <= points.length <= 50
0 <= points[i][0] <= 40000
0 <= points[i][1] <= 40000
- All points are distinct.
- Answers within
10^-5
of the actual value will be accepted as correct.
Approach #1: Math. [Java]
class Solution { public double minAreaFreeRect(int[][] points) { int len = points.length; if (len < 4) return 0.0; double ret = Double.MAX_VALUE; Map<String, List<int[]>> map = new HashMap<>(); for (int i = 0; i < len; ++i) { for (int j = i+1; j < len; ++j) { long diagonal = (points[i][0] - points[j][0]) * (points[i][0] - points[j][0]) + (points[i][1] - points[j][1]) * (points[i][1] - points[j][1]); double centerX = (double)(points[i][0] + points[j][0]) / 2; double centerY = (double)(points[i][1] + points[j][1]) / 2; String key = "" + diagonal + "+" + centerX + "+" + centerY; if (map.get(key) == null) map.put(key, new ArrayList<int[]>()); map.get(key).add(new int[]{i, j}); } } for (String key : map.keySet()) { List<int[]> list = map.get(key); if (list.size() < 2) continue; for (int i = 0; i < list.size(); ++i) { for (int j = i+1; j < list.size(); ++j) { int p1 = list.get(i)[0]; int p2 = list.get(j)[0]; int p3 = list.get(j)[1]; double x = Math.sqrt((points[p1][0] - points[p2][0]) * (points[p1][0] - points[p2][0]) + (points[p1][1] - points[p2][1]) * (points[p1][1] - points[p2][1])); double y = Math.sqrt((points[p1][0] - points[p3][0]) * (points[p1][0] - points[p3][0]) + (points[p1][1] - points[p3][1]) * (points[p1][1] - points[p3][1])); double area = x * y; ret = Math.min(ret, area); } } } return ret == Double.MAX_VALUE ? 0.0 : ret; } }
Analysis:
1. Two diagonals of a rectangle bisect each other, and are of equal length.
2. The map's key is String including diagonal length and coordinate of the diagonal center; map's vlaue is the index of two points forming the diagonal.
Reference:
https://leetcode.com/problems/minimum-area-rectangle-ii/discuss/208361/JAVA-O(n2)-using-Map