Given a sequence of positive integers and another positive integer p. The sequence is said to be a perfect sequence if M≤m×p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (≤) is the number of integers in the sequence, and p (≤) is the parameter. In the second line there are N positive integers, each is no greater than 1.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
题意:
给出一组数,在这组数中尽可能多的选出数字,使得所选出数字的最大值M和最小值n,满足M <= n * p。刚开始的时候我就理解错了,没有搞明白题意,以为是按照所给出序列的顺序来寻找。
思路:
https://www.liuchuo.net/archives/1908
Code:
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main() {
int t;
long long p;
cin >> t >> p;
int c;
vector<int> v;
for (int i = 0; i < t; ++i) {
cin >> c;
v.push_back(c);
}
sort(v.begin(), v.end());
int temp = 0, result = 0;
for (int i = 0; i < t; ++i) {
for (int j = i+result; j < t; ++j) {
if (v[j] <= v[i]*p) {
temp = j - i + 1;
if (temp > result)
result = temp;
} else {
break;
}
}
}
cout << result << endl;
return 0;
}
int的取值范围:-2147483648 到2147483647
这里p的范围是小于109已经超出了int的范围,所以应该选择long long
if (v[j] <= v[i]*p) {
temp = j - i + 1;
if (temp > result)
result = temp;
}
v[i] * p 会不会溢出成为负值呢?