zoukankan      html  css  js  c++  java
  • 300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence.

    Example:

    Input: [10,9,2,5,3,7,101,18]
    Output: 4
    Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
    Note:

    There may be more than one LIS combination, it is only necessary for you to return the length.
    Your algorithm should run in O(n2) complexity.
    Follow up: Could you improve it to O(n log n) time complexity?

    Approach #1 Dynamic Programing

    class Solution {
    public:
        int lengthOfLIS(vector<int>& nums) {
            int len = nums.size();
            if (len == 0) return 0;
            int ans = 1;
            vector<int> temp(len, 1);
            for (int i = len-2; i >= 0; --i) {
                for (int j = i; j < len; ++j) {
                    if (nums[i] < nums[j]) {
                        temp[i] = max(temp[i], temp[j] + 1);
                    }
                }           
                ans = max(ans, temp[i]);
            }
            return ans;
        }
    };
    

    Runtime: 24 ms, faster than 26.23% of C++ online submissions for Longest Increasing Subsequence.

    class Solution {
    public:
        int lengthOfLIS(vector<int>& nums) {
            vector<int> temp;
            for (int i = 0; i < nums.size(); ++i) {
                auto it = std::lower_bound(temp.begin(), temp.end(), nums[i]);
                if (it == temp.end()) temp.push_back(nums[i]);
                else *it = nums[i];
            }
            return temp.size();
        }
    };
    

    Runtime: 4 ms, faster than 72.86% of C++ online submissions for Longest Increasing

    Analysis:
    lower_bound(temp.begin(), temp.end(), nums[i]) return the first element's address which more or equal to nums[i].
    In this approach we use a vector to store the LIS nums.

    Our strategy determined by the following conditions,

    1. If A[i] is smallest among all end
      candidates of active lists, we will start
      new active list of length 1.
    2. If A[i] is largest among all end candidates of
      active lists, we will clone the largest active
      list, and extend it by A[i].
    1. If A[i] is in between, we will find a list with
      largest end element that is smaller than A[i].
      Clone and extend this list by A[i]. We will discard all
      other lists of same length as that of this modified list.

    here is an example:
    It will be clear with an example, let us take example from wiki {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}.

    A[0] = 0. Case 1. There are no active lists, create one.
    0.


    A[1] = 8. Case 2. Clone and extend.
    0.
    0, 8.


    A[2] = 4. Case 3. Clone, extend and discard.
    0.
    0, 4.
    0, 8.Discarded


    A[3] = 12. Case 2. Clone and extend.
    0.
    0, 4.
    0, 4, 12.


    A[4] = 2. Case 3. Clone, extend and discard.
    0.
    0, 2.
    0, 4.Discarded.
    0, 4, 12.


    A[5] = 10. Case 3. Clone, extend and discard.
    0.
    0, 2.
    0, 2, 10.
    0, 4, 12. Discarded.


    A[6] = 6. Case 3. Clone, extend and discard.
    0.
    0, 2.
    0, 2, 6.
    0, 2, 10. Discarded.


    A[7] = 14. Case 2. Clone and extend.
    0.
    0, 2.
    0, 2, 6.
    0, 2, 6, 14.


    A[8] = 1. Case 3. Clone, extend and discard.
    0.
    0, 1.
    0, 2. Discarded.
    0, 2, 6.
    0, 2, 6, 14.


    A[9] = 9. Case 3. Clone, extend and discard.
    0.
    0, 1.
    0, 2, 6.
    0, 2, 6, 9.
    0, 2, 6, 14.Discarded.


    A[10] = 5. Case 3. Clone, extend and discard.
    0.
    0, 1.
    0, 1, 5.
    0, 2, 6.Discarded.
    0, 2, 6, 9.


    A[11] = 13. Case 2. Clone and extend.
    0.
    0, 1.
    0, 1, 5.
    0, 2, 6, 9.
    0, 2, 6, 9, 13.


    A[12] = 3. Case 3. Clone, extend and discard.
    0.
    0, 1.
    0, 1, 3.
    0, 1, 5. Discarded.
    0, 2, 6, 9.
    0, 2, 6, 9, 13.


    A[13] = 11. Case 3. Clone, extend and discard.
    0.
    0, 1.
    0, 1, 3.
    0, 2, 6, 9.
    0, 2, 6, 9, 11.
    0, 2, 6, 9, 13. Discarded.


    A[14] = 7. Case 3. Clone, extend and discard.
    0.
    0, 1.
    0, 1, 3.
    0, 1, 3, 7.
    0, 2, 6, 9. Discarded.
    0, 2, 6, 9, 11.


    A[15] = 15. Case 2. Clone and extend.
    0.
    0, 1.
    0, 1, 3.
    0, 1, 3, 7.
    0, 2, 6, 9, 11.
    0, 2, 6, 9, 11, 15. <-- LIS List


    2021-04-27 23:34:48 星期二
    给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

    子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

    示例 1:

    输入:nums = [10,9,2,5,3,7,101,18]
    输出:4
    解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
    示例 2:

    输入:nums = [0,1,0,3,2,3]
    输出:4
    示例 3:

    输入:nums = [7,7,7,7,7,7,7]
    输出:1

    提示:

    1 <= nums.length <= 2500
    -104 <= nums[i] <= 104

    进阶:

    你可以设计时间复杂度为 O(n2) 的解决方案吗?
    你能将算法的时间复杂度降低到 O(n log(n)) 吗?

    思路:DP问题,维护一个一维的dp数组用来记录当前位置的最长递增子序列的长度。每计算一个位置的最长递增子序列时,都要与之前的数字进行比较
    if nums[i] > nums[j]: dp[i] = max(dp[i], dp[j] + 1)
    image

    Code:

    class Solution {
    public:
        int lengthOfLIS(vector<int>& nums) {
            int len = nums.size();
            vector<int> dp(len, 1);
            for (int i = 0; i < len; ++i) {
                for (int j = 0; j < i; ++j) {
                    if (nums[i] > nums[j]) {
                        dp[i] = max(dp[i], dp[j] + 1);
                    }
                }
            }
            return *max_element(dp.begin(), dp.end());
        }
    };
    
    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Data Structure Graph: cycle in a directed graph
    Data Structure Trie: suffix problem
    Data Structure Stack: Reverse a stack using recursion
    Data Structure Stack: Infix to Postfix
    Data Structure Linked List: Flattening a Linked List
    单纯形方法(Simplex Method)
    阿里云服务器9.9元/月,学生专享!
    佣金百万so easy!阿里云推广联盟喊你来赚钱
    阿里云双11绽放在即,1111元代金券天天送!
    阿里云新人礼,马上领取!
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9898933.html
Copyright © 2011-2022 走看看