Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Input: matrix = [[1,0,1],[0,-2,3]], k = 2
Output: 2
Explanation: Because the sum of rectangle [[0, 1], [-2, 3]] is 2,
and 2 is the max number no larger than k (k = 2).
Note:
- The rectangle inside the matrix must have an area > 0.
- What if the number of rows is much larger than the number of columns?
Approach #1:
class Solution {
public:
int maxSumSubmatrix(vector<vector<int>>& matrix, int k) {
int row = matrix.size();
int col = matrix[0].size();
int ans = INT_MIN;
for (int i = 0; i < col; ++i) {
vector<int> temp(row, 0);
for (int j = i; j < col; ++j) {
for (int k = 0; k < row; ++k)
temp[k] += matrix[k][j];
helper(temp, k, ans);
}
}
return ans;
}
void helper(vector<int> temp, int k, int& ans) {
int sum = 0;
int cur_max = INT_MIN;
set<int> s;
s.insert(0);
for (int i = 0; i < temp.size(); ++i) {
sum += temp[i];
auto it = s.lower_bound(sum-k);
if (it != s.end()) cur_max = max(cur_max, sum - *it);
s.insert(sum);
}
ans = max(ans, cur_max);
}
};
Runtime: 172 ms, faster than 55.61% of C++ online submissions for Max Sum of Rectangle No Larger Than K.
here is a esay way to understand "largest sum of contiguous subarray No Larger than k"
private int maxSumSubArray(int[] a , int k){
int max = Integer.MIN_VALUE;
for(int i=0;i<a.length;i++){
int tsum = 0;
for(int j=i;j<a.length;j++){
tsum += a[j];
if(tsum <= k) max=Math.max(max,tsum);
}
}
return max;
}