zoukankan      html  css  js  c++  java
  • 786. K-th Smallest Prime Fraction

    A sorted list A contains 1, plus some number of primes.  Then, for every p < q in the list, we consider the fraction p/q.

    What is the K-th smallest fraction considered?  Return your answer as an array of ints, where answer[0] = p and answer[1] = q.

    Examples:
    Input: A = [1, 2, 3, 5], K = 3
    Output: [2, 5]
    Explanation:
    The fractions to be considered in sorted order are:
    1/5, 1/3, 2/5, 1/2, 3/5, 2/3.
    The third fraction is 2/5.
    
    Input: A = [1, 7], K = 1
    Output: [1, 7]
    

    Note:

    • A will have length between 2 and 2000.
    • Each A[i] will be between 1 and 30000.
    • K will be between 1 and A.length * (A.length - 1) / 2.

    Approach #1: brute force.[Time Limit Exceeded]

    class Solution {
    public:
        vector<int> kthSmallestPrimeFraction(vector<int>& A, int K) {
            int n = A.size();
            vector<pair<int, int>> temp;
            vector<int> ans;
            for (int i = 0; i < n; ++i) {
                for (int j = i+1; j < n; ++j) {
                    temp.push_back({A[i], A[j]});
                }
            }
            sort(temp.begin(), temp.end(), cmp);
            ans.push_back(temp[K-1].first);
            ans.push_back(temp[K-1].second);
            return ans;
        }
        
        static bool cmp (pair<int, int> a, pair<int, int> b) {
            return (double)a.first/a.second < (double)b.first/b.second;
        }
    };
    

    Approach #2: Binary Search.

    class Solution {
    public:
        vector<int> kthSmallestPrimeFraction(vector<int>& A, int K) {
            int n = A.size();
            double l = 0.0, r = 1.0;
            while (l < r) {
                double m = (l + r) / 2;
                double max_f = 0.0;
                int total = 0;
                int p, q;
                int j = 1;
                for (int i = 0; i < n-1; ++i) {
                    while (j < n && A[i] > m * A[j]) ++j;
                    total += (n - j);
                    if (j == n) break;
                    double f = static_cast<double>(A[i]) / A[j];
                    if (f > max_f) {
                        p = i;
                        q = j;
                        max_f = f;
                    }
                }
                if (total == K) return {A[p], A[q]};
                else if (total < K) l = m;
                else r = m;
            }
            return {};
        }
    };
    

    Runtime: 12 ms, faster than 83.88% of C++ online submissions for K-th Smallest Prime Fraction.

    Analysis:

    1. why use static_cast<>?

    In short:

    1. static_cast<>() gives you a compile time checking ability, C-Style cast doesn't.
    2. static_cast<>() can be spotted easily anywhere inside a C++ source code; in contrast, C_Style cast is harder to spot.
    3. Intentions are conveyed much better using C++ casts.

    More Explanation:

    The static cast performs conversions between compatible types. It is similar to the C-style cast, but is more restrictive. For example, the C-style cast would allow an integer pointer to point to a char.

    char c = 10;       // 1 byte
    int *p = (int*)&c; // 4 bytes

    Since this results in a 4-byte pointer pointing to 1 byte of allocated memory, writing to this pointer will either cause a run-time error or will overwrite some adjacent memory.

    *p = 5; // run-time error: stack corruption

    In contrast to the C-style cast, the static cast will allow the compiler to check that the pointer and pointee data types are compatible, which allows the programmer to catch this incorrect pointer assignment during compilation.

    int *q = static_cast<int*>(&c); // compile-time error

    2. In this way we make m as a flag (range is from 0 to 1),  we can count the numbers which elements less than m. when if m == K we return {A[p], A[q]} , else if m > K => r = m; else l = m

    we can use a matrix to instore the A[i] / A[j], but in order to reduce the time complexity  we can use under code to realize.

      
    for (int i = 0; i < n-1; ++i)
      while (j < n && A[i] > m * A[j]) ++j;

    for every loop j can be using repeatedly, because when i increase, in order to make A[i] > m * A[j], j must bigger than last loop.

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    ~随笔A007~html中input输入框的字数限制、同步input的输入内容至div中
    ~随笔A006~微信扫码的授权、用户绑定、关注公众号、消息反馈
    【CV】实验二:特征检测与匹配
    【笔记】DLX算法及常见应用
    【笔记】和算法无关的那些东东
    【笔记】康拓展开&逆康拓展开
    【笔记】离散对数
    【笔记】Shift-And算法&Shift-OR算法
    【模板】中缀表达式求值
    【笔记】数据库系统
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9936650.html
Copyright © 2011-2022 走看看