zoukankan      html  css  js  c++  java
  • 786. K-th Smallest Prime Fraction

    A sorted list A contains 1, plus some number of primes.  Then, for every p < q in the list, we consider the fraction p/q.

    What is the K-th smallest fraction considered?  Return your answer as an array of ints, where answer[0] = p and answer[1] = q.

    Examples:
    Input: A = [1, 2, 3, 5], K = 3
    Output: [2, 5]
    Explanation:
    The fractions to be considered in sorted order are:
    1/5, 1/3, 2/5, 1/2, 3/5, 2/3.
    The third fraction is 2/5.
    
    Input: A = [1, 7], K = 1
    Output: [1, 7]
    

    Note:

    • A will have length between 2 and 2000.
    • Each A[i] will be between 1 and 30000.
    • K will be between 1 and A.length * (A.length - 1) / 2.

    Approach #1: brute force.[Time Limit Exceeded]

    class Solution {
    public:
        vector<int> kthSmallestPrimeFraction(vector<int>& A, int K) {
            int n = A.size();
            vector<pair<int, int>> temp;
            vector<int> ans;
            for (int i = 0; i < n; ++i) {
                for (int j = i+1; j < n; ++j) {
                    temp.push_back({A[i], A[j]});
                }
            }
            sort(temp.begin(), temp.end(), cmp);
            ans.push_back(temp[K-1].first);
            ans.push_back(temp[K-1].second);
            return ans;
        }
        
        static bool cmp (pair<int, int> a, pair<int, int> b) {
            return (double)a.first/a.second < (double)b.first/b.second;
        }
    };
    

    Approach #2: Binary Search.

    class Solution {
    public:
        vector<int> kthSmallestPrimeFraction(vector<int>& A, int K) {
            int n = A.size();
            double l = 0.0, r = 1.0;
            while (l < r) {
                double m = (l + r) / 2;
                double max_f = 0.0;
                int total = 0;
                int p, q;
                int j = 1;
                for (int i = 0; i < n-1; ++i) {
                    while (j < n && A[i] > m * A[j]) ++j;
                    total += (n - j);
                    if (j == n) break;
                    double f = static_cast<double>(A[i]) / A[j];
                    if (f > max_f) {
                        p = i;
                        q = j;
                        max_f = f;
                    }
                }
                if (total == K) return {A[p], A[q]};
                else if (total < K) l = m;
                else r = m;
            }
            return {};
        }
    };
    

    Runtime: 12 ms, faster than 83.88% of C++ online submissions for K-th Smallest Prime Fraction.

    Analysis:

    1. why use static_cast<>?

    In short:

    1. static_cast<>() gives you a compile time checking ability, C-Style cast doesn't.
    2. static_cast<>() can be spotted easily anywhere inside a C++ source code; in contrast, C_Style cast is harder to spot.
    3. Intentions are conveyed much better using C++ casts.

    More Explanation:

    The static cast performs conversions between compatible types. It is similar to the C-style cast, but is more restrictive. For example, the C-style cast would allow an integer pointer to point to a char.

    char c = 10;       // 1 byte
    int *p = (int*)&c; // 4 bytes

    Since this results in a 4-byte pointer pointing to 1 byte of allocated memory, writing to this pointer will either cause a run-time error or will overwrite some adjacent memory.

    *p = 5; // run-time error: stack corruption

    In contrast to the C-style cast, the static cast will allow the compiler to check that the pointer and pointee data types are compatible, which allows the programmer to catch this incorrect pointer assignment during compilation.

    int *q = static_cast<int*>(&c); // compile-time error

    2. In this way we make m as a flag (range is from 0 to 1),  we can count the numbers which elements less than m. when if m == K we return {A[p], A[q]} , else if m > K => r = m; else l = m

    we can use a matrix to instore the A[i] / A[j], but in order to reduce the time complexity  we can use under code to realize.

      
    for (int i = 0; i < n-1; ++i)
      while (j < n && A[i] > m * A[j]) ++j;

    for every loop j can be using repeatedly, because when i increase, in order to make A[i] > m * A[j], j must bigger than last loop.

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    20120110 自己写的基于jquery的翻页效果
    搜来的 可爱的if ie
    哎~~~纠结死了的终于解决的i6的fixed属性
    2011815发现可好的js繁简转换代码 写这些的人。。好厉害呀 收藏了~~~
    网站制作CSS图片转换滤镜代码(貌似只对ie有用。。。)
    2011811 右下角弹出渐隐的广告代码 可以关闭 可以缩小 还各种兼容(ff opera ie6、7、8都试过了)值得保留哎~~~
    20120604 自己写的基于jquery的类似百度贴吧头像提示效果
    UFT textUtil object 解决奇怪问题
    UFT send request & get response
    UFT connect sql (1)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9936650.html
Copyright © 2011-2022 走看看