zoukankan      html  css  js  c++  java
  • Binary Tree Traversal

    Preorder:

    Approach #1: Recurisive.

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        vector<int> preorderTraversal(TreeNode* root) {
            vector<int> ans;
            helper(root, ans);
            return ans;
        }
        
    private:
        void helper(TreeNode* root, vector<int>& ans) {
            if (root == NULL) return ;
            ans.push_back(root->val);
            helper(root->left, ans);
            helper(root->right, ans);  
        }
    };
    

    Approach #2: Iteratively.[Java]

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        public List<Integer> preorderTraversal(TreeNode root) {
            List<Integer> res = new LinkedList<Integer>();
            Stack<TreeNode> todo = new Stack<TreeNode>();
            TreeNode cur = root;
            while (cur != null) {
                res.add(cur.val);
                if (cur.right != null) {
                    todo.push(cur.right);
                }
                cur = cur.left;
                if (cur == null && !todo.isEmpty()) {
                    cur = todo.pop();
                }
            }
            return res;
        }
    }
    

    Approach #3: Morris Traversal.[C++]

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        vector<int> preorderTraversal(TreeNode* root) {
            TreeNode* cur = root;
            vector<int> nodes;
            while (cur) {
                if (cur->left) {
                    TreeNode* pre = cur->left;
                    while (pre->right && (pre->right != cur)) {
                        pre = pre->right;
                    }
                    if (!(pre->right)) {
                        nodes.push_back(cur->val);
                        pre->right = cur;
                        cur = cur->left;
                    } else {
                        pre->right = NULL;
                        cur = cur->right;
                    }
                } else {
                    nodes.push_back(cur->val);
                    cur = cur->right;
                }
            }
            return nodes;
        }
    };
    

    Using Morris Traversal can don't use recurisive and stack and space complex is O(1).


    inorder

    Approach #1: Java.

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        public List<Integer> inorderTraversal(TreeNode root) {
            List<Integer> res =  new ArrayList< > ();
            Stack<TreeNode> stack = new Stack< > ();
            TreeNode curr = root;
            while (curr != null || !stack.isEmpty()) {
                while (curr != null) {
                    stack.push(curr);
                    curr = curr.left;
                }
                curr = stack.pop();
                res.add(curr.val);
                curr = curr.right;
            }
            return res;
        }
    }
    

      


    postorder

    Approach #2: C++.

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        vector<int> postorderTraversal(TreeNode* root) {
            stack<TreeNode*> todo;
            vector<int> res;
            TreeNode* node = root;
            TreeNode* last = NULL;
            while (node || !todo.empty()) {
                if (node) {
                    todo.push(node);
                    node = node->left;
                } else {
                    TreeNode* top = todo.top();
                    if (top->right && top->right != last) {
                        node = top->right; 
                    } else {
                        res.push_back(top->val);
                        last = top;
                        todo.pop();
                    }
                }
            }
            return res;
        }
    };
    

      


    Binary Tree Level Order Traversal

    Approach #1: C++. [Using queue]
    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        vector<vector<int>> levelOrder(TreeNode* root) {
            vector<vector<int>> ans;
            queue<TreeNode*> q;
            if (root == NULL) return ans;
            q.push(root);
            while (!q.empty()) {
                int size = q.size();
                vector<int> dummy;
                for (int i = 0; i < size; ++i) {
                    TreeNode* node = q.front();
                    if (node->left != NULL) q.push(node->left);
                    if (node->right != NULL) q.push(node->right);
                    dummy.push_back(node->val);
                    q.pop();
                }
                ans.push_back(dummy);
            }
            
            return ans;
        }
    };
    

      

    Approach #2: Java. [Using recursive.] 
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        public List<List<Integer>> levelOrder(TreeNode root) {
            List<List<Integer>> res = new ArrayList<List<Integer>>();
            levelHelper(res, root, 0);
            return res;
        }
        
        public void levelHelper(List<List<Integer>> res, TreeNode root, int height) {
            if (root == null) return;
            if (height >= res.size()) {
                res.add(new LinkedList<Integer>());
            }
            res.get(height).add(root.val);
            levelHelper(res, root.left, height + 1);
            levelHelper(res, root.right, height + 1);
        }
    }
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    打印机无法打印文件
    .Net com组件操作excel(不建议采用Com组件操作excel)
    Zebra
    Map遍历方式
    PageHelper原理
    MySQL8.0新特性
    算法_插入排序
    贝叶斯定理
    二叉树学习笔记
    Java校验时间段重叠
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9978743.html
Copyright © 2011-2022 走看看