from keras.datasets import mnist from keras import models from keras import layers from keras.utils import to_categorical import numpy as np def loadData(path="mnist.npz"): f = np.load(path) x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] f.close() return (x_train, y_train), (x_test, y_test) (train_images, train_lables),(test_images,test_labels) = loadData() network=models.Sequential() network.add(layers.Dense(512,activation='relu',input_shape=(28*28,))) network.add(layers.Dense(10,activation='softmax')) network.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy']) train_images = train_images.reshape((60000,28*28)) train_images=train_images.astype('float32')/255 test_images=test_images.reshape((10000,28*28)) test_images=test_images.astype('float32')/255 train_lables=to_categorical(train_lables)#对标签进行分类编码,one hot编码 test_labels=to_categorical(test_labels) network.fit(train_images,train_lables, epochs=5,batch_size=128)
出现了一个问题:https://blog.csdn.net/ouening/article/details/85065709
后来发现是标签分类编码那里写错了。。