zoukankan      html  css  js  c++  java
  • GAN生成对抗网络

    https://blog.csdn.net/choushi5845/article/details/100747118

    https://blog.csdn.net/LEE18254290736/article/details/97371930

    1、生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。

    2、模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。

    3、判别网络的目的:就是能判别出来属于的一张图它是来自真实样本集还是假样本集。假如输入的是真样本,网络输出就接近1,输入的是假样本,网络输出接近0,那么很完美,达到了很好判别的目的。

    4、生成网络的目的:生成网络是造样本的,它的目的就是使得自己造样本的能力尽可能强,强到什么程度呢,你判别网络没法判断我是真样本还是假样本。

    因此辨别网络的作用就是对噪音生成的数据辨别他为假的,对真实的数据辨别他为真的。

    生成网络的损失函数就是使得对于噪音数据,经过辨别网络之后的辨别结果是真的,这样就能达到生成真实图像的目的。

    GAN 的发展路线图

    我们将按照下面的顺序,一步一步学习它:

    1. GAN:生成对抗网络
    2. DCGAN:深度卷积生成对抗网络
    3. CGAN:条件生成对抗网络
    4. CycleGAN
    5. CoGAN:耦合生成对抗网络
    6. ProGAN:生成对抗网络的渐进式增长
    7. WGAN:Wasserstein 生成对抗网络
    8. SAGAN:自注意力生成对抗网络
    9. BigGAN:大生成对抗性网络
    10. StyleGAN:基于风格的生成对抗网络
  • 相关阅读:
    MongoDB的简单操作
    MongoDB下载安装
    enctype="multipart/form-data" form表单提交值为null
    shiro
    json简单介绍
    Sql Server 安装
    MySQL面试常问的查询操作
    关于分页
    Vuex
    Vue基础安装(精华)
  • 原文地址:https://www.cnblogs.com/h694879357/p/13376276.html
Copyright © 2011-2022 走看看