问题:
给定数字n,由n个数字(0~9)构成0~n位数,求构成的数中,不同数位上重复数字的数以外,有多少个数。
Example: Input: 2 Output: 91 Explanation: The answer should be the total numbers in the range of 0 ≤ x < 100, excluding 11,22,33,44,55,66,77,88,99 Constraints: 0 <= n <= 8
解法:Backtracking(回溯算法)
对于本问题,两个变量:
- 路径:已经选择好的前几位结果path
- 选择列表:对该位置上元素的选择可能性:0~9中不在path中的任意数字
处理过程:
- base:递归退出条件:选择到最后一位结束,这里为已经选择好路径长度==给出的组合要求长度 n。
- 做选择:对于当前位置,选择其中一个可用数字a。(不在path中的任意数字)
- 路径.add(a)
- 选择列表.delete(a):上一个选择数字 i + 1
- 撤销选择:回退到选择数字a之前的状况。
- 路径.delete(a)
- 选择列表.add(a):i
⚠️ 注意:特别的以0开头的数字,不要求开头的0与其他位的0进行重复。
代码参考:
1 class Solution { 2 public: 3 void dfs(int& res, int n, int pos, unordered_set<int>& path) { 4 if(pos == n) { 5 res++; 6 return; 7 } 8 for(int i=0; i<10; i++) { 9 if(path.count(i)==0) { 10 path.insert(i); 11 if(path.size()==1 && i==0) path.erase(i); 12 dfs(res, n, pos+1, path); 13 path.erase(i); 14 } 15 } 16 return; 17 } 18 int countNumbersWithUniqueDigits(int n) { 19 int res = 0; 20 unordered_set<int> path; 21 dfs(res, n, 0, path); 22 return res; 23 } 24 };
数学算法:
Following the hint. Let f(n) = count of number with unique digits of length n.
f(1) = 10. (0, 1, 2, 3, ...., 9)
f(2) = 9 * 9. Because for each number i from 1, ..., 9, we can pick j to form a 2-digit number ij and there are 9 numbers that are different from i for j to choose from.
f(3) = f(2) * 8 = 9 * 9 * 8. Because for each number with unique digits of length 2, say ij, we can pick k to form a 3 digit number ijk and there are 8 numbers that are different from i and j for k to choose from.
Similarly f(4) = f(3) * 7 = 9 * 9 * 8 * 7....
...
f(10) = 9 * 9 * 8 * 7 * 6 * ... * 1
f(11) = 0 = f(12) = f(13)....
any number with length > 10 couldn't be unique digits number.
The problem is asking for numbers from 0 to 10^n. Hence return f(1) + f(2) + .. + f(n)
代码参考:
1 class Solution { 2 public: 3 int countNumbersWithUniqueDigits(int n) { 4 int res = 10; 5 if(n==0) return 1; 6 int kcounts = 9;//k位数,能构成的符合条件的数字总数 7 int avalible = 9;//该位置余下可用的数字个数 8 for(int i=n; i>1; i--) { 9 kcounts = kcounts * avalible; 10 res += kcounts; 11 avalible--; 12 } 13 return res; 14 } 15 };