问题:
给定由数字构成的字符串,对其进行分割,使得构成斐波那契数列。
返回一个解。
Example 1: Input: "123456579" Output: [123,456,579] Example 2: Input: "11235813" Output: [1,1,2,3,5,8,13] Example 3: Input: "112358130" Output: [] Explanation: The task is impossible. Example 4: Input: "0123" Output: [] Explanation: Leading zeroes are not allowed, so "01", "2", "3" is not valid. Example 5: Input: "1101111" Output: [110, 1, 111] Explanation: The output [11, 0, 11, 11] would also be accepted. Note: 1 <= S.length <= 200 S contains only digits. Formally, a Fibonacci-like sequence is a list F of non-negative integers such that: ・0 <= F[i] <= 2^31 - 1, (that is, each integer fits a 32-bit signed integer type); ・F.length >= 3; ・and F[i] + F[i+1] = F[i+2] for all 0 <= i < F.length - 2.
解法:Backtracking(回溯算法)
- 状态:字符串当前位置pos为止,构成的解path。
- 选择:下一个子串s[pos~i~S.size],
- 若path还不满2个子串:选择第1,2子串:
- 任意长度可选。
- 若path超过2个子串:选择第3...子串:
- 子串==path尾部两个子串之和。
- 若path还不满2个子串:选择第1,2子串:
- 退出递归条件:
- 当前位置pos==S.size
- 加入res:path.size>2
- 不加res:path.size<=2
- 当前位置pos==S.size
- 其他退出:
- 第1,2子串:
- >INT_MAX or
- <0 or
- 首字母='0'且该子串转成数字!=0
- 第3...子串:
- >INT_MAX or
- !=前两个子串之和
- 第1,2子串:
代码参考:
1 class Solution { 2 public: 3 void getres(vector<int>& res, vector<string>& path) { 4 if(path.size()<=2) return; 5 for(string p:path) { 6 res.push_back(atoi(p.c_str())); 7 } 8 return; 9 } 10 void dfs(vector<int>& res, string S, int pos, vector<string>& path) { 11 if(pos==S.length()) { 12 getres(res, path); 13 return; 14 } 15 int i = 1; 16 int n = path.size(); 17 long long curres = 0; 18 if(n>=2) { 19 curres = atoll(path[n-1].c_str()) + atoll(path[n-2].c_str()); 20 if(curres >= INT_MAX) return; 21 i = to_string(curres).length(); 22 string num = S.substr(pos, i); 23 int numi = atoi(num.c_str()); 24 if(numi!=curres) return; 25 else { 26 path.push_back(num); 27 dfs(res, S, pos+i, path); 28 path.pop_back(); 29 return; 30 } 31 } else { 32 for(i; i<=S.length()-pos; i++) { 33 string num = S.substr(pos, i); 34 int numi = atoi(num.c_str()); 35 if(numi >= INT_MAX || numi < 0 || (num[0] == '0' && num.length() != 1)) break; 36 path.push_back(num); 37 dfs(res, S, pos+i, path); 38 if(!res.empty()) return; 39 path.pop_back(); 40 } 41 } 42 43 } 44 vector<int> splitIntoFibonacci(string S) { 45 vector<int> res; 46 vector<string> path; 47 dfs(res, S, 0, path); 48 return res; 49 } 50 };