zoukankan      html  css  js  c++  java
  • 1240. Tiling a Rectangle with the Fewest Squares

    问题:

    给定长宽m,n的矩形,将其划分为多个正方形,最少能划分多少个。

    Example 1:
    Input: n = 2, m = 3
    Output: 3
    Explanation: 3 squares are necessary to cover the rectangle.
    2 (squares of 1x1)
    1 (square of 2x2)
    
    Example 2:
    Input: n = 5, m = 8
    Output: 5
    
    Example 3:
    Input: n = 11, m = 13
    Output: 6
     
    Constraints:
    1 <= n <= 13
    1 <= m <= 13
    

    Example 1:

    Example 2:

     

    Example 3:

    解法:DP(动态规划)Backtracking(回溯算法)

    参考:LeetCode讲解

    将问题划分为子问题:

    将当前n*m的矩形划分方法:

    方法1: 一分为二:

    ←正方形 [n*n] + →矩形rec [n*(m-n)] 

    res=dp(rec) + 1(左边正方形)

    方法2:

    ↙️正方形 [s*s↗️正方形 [k*k]

    +↖️矩形rec_1 [(n-s)*(m-k)] + ↘️矩形rec_2 [(n-k)*(m-s)]  + middle小矩形rec_3 [(k-(n-s))*((m-s)-k)]

    变化范围:

    s:最大:n ~ 最小:0

    k:最大:min((m-s)横, n高) ~ 最小:超过(n-s)高b虚线

    res=dp(rec_1)+dp(rec_2)+dp(rec_3) + 2(两个正方形)

     base case:(我们确定n<=m)

    • m==0 | | n==0 -> 0 不存在方块
    • m==n -> 1 恰好一个正方形
    • n==1 -> m 只能分成m个正方形

    代码参考:

     1 class Solution {
     2 public:
     3     int count = 0;
     4     void print_intend() {
     5         for(int i=0; i<count; i++) {
     6             printf("  ");
     7         }
     8         return;
     9     }
    10     vector<vector<int>> dp;
    11     int dfs(int n, int m) {//dfs(short,long)
    12         if(n>m) swap(n,m);
    13         print_intend();
    14         printf("n:%d m:%d
    ", n,m);
    15         //if (n,m) has been solved
    16         if(dp[n][m]!=-1) {
    17             print_intend();
    18             printf("return dp[n][m]:%d
    ", dp[n][m]);
    19             return dp[n][m];
    20         }
    21         //base case:
    22         // 1.m=0 || n=0
    23         if(m==0 || n==0) {
    24             print_intend();
    25             printf("return 0
    ");
    26             return 0;
    27         }
    28         // 2.n=m -> square
    29         if(m==n) {
    30             print_intend();
    31             printf("return 0
    ");
    32             return 1;
    33         }
    34         // 3.n=1 -> m squares
    35         if(n==1) {
    36             print_intend();
    37             printf("return m:%d
    ", m);
    38             return m;
    39         }
    40         
    41         count++;
    42         //other case: res=min(case_1,case2...)
    43           //case_1: cut rec to left(square) & right subrec (cause:n<m, ignore up & down)
    44         int res = dfs(n,m-n) + 1;
    45           //case_2: cut rec to 
    46           //left-down(square) & right-up(square) [BLUE] s*s & k*k
    47           //left-up(rec_1) & right-down(rec_2) & middle(rec_3) [RED][GREEN][YELLOW]
    48           //(n-s)*(m-k)    & (m-s)*(n-k)       & (k-(n-s))*((m-s)-k)
    49         int rec_1, rec_2, rec_3;
    50         int ans = INT_MAX;
    51         for(int s=n-1; s>0; s--) {
    52             for(int k=min(n,m-s); k>=n-s; k--) {
    53                 rec_1 = dfs(n-s, m-k);
    54                 rec_2 = dfs(m-s, n-k);
    55                 rec_3 = dfs(k-(n-s), (m-s)-k);
    56                 ans = min(ans,rec_1+rec_2+rec_3+2);
    57             }
    58         }
    59         res = min(res, ans);
    60         dp[n][m] = res;
    61         print_intend();
    62         printf("return ans_res:%d, dp[%d][%d]
    ", res, n, m);
    63         count--;
    64         return res;
    65     }
    66     
    67     
    68     int tilingRectangle(int n, int m) {
    69         int x = min(n,m);//short
    70         int y = max(n,m);//long
    71         int res;
    72         //initialize dp:
    73         //dp[0][0]~dp[n+1][m+1] -> all cell = -1
    74         dp.resize(x+1);
    75         for(auto& d:dp) {
    76             d.resize(y+1, -1);
    77         }
    78         res = dfs(x,y);//dfs(short,long)
    79         return res;
    80     }
    81 };
  • 相关阅读:
    [C++] split string by string
    工作三个月心得经验
    Ubuntu Command-Line: Enable Unlimited Scrolling in the Terminal
    What is the PPA and How to do with it ?
    WCF vs ASMX WebService
    The ShortCuts in the ADT (to be continued)
    when does the View.ondraw method get called
    Browsing Storage Resources with Server Explorer
    Get start with Android development
    C++ Frequently asking question
  • 原文地址:https://www.cnblogs.com/habibah-chang/p/14383809.html
Copyright © 2011-2022 走看看