zoukankan      html  css  js  c++  java
  • 913. Cat and Mouse

    问题:

    给定一个无向图,节点0~N-1

    • mouse:从1出发->  到达 0,win -> return 1
    • cat:从2出发-> 到达mouse的当前位置,win(不能走 0 节点)-> return 2
    • 若两者都无法win,且走完所有的节点,那么平局 tie。-> return 0

    ⚠️ 注意:

    • mouse和cat都不能重复走同一个节点。
    • mouse先出发。
    Example 1:
    Input: graph = [[2,5],[3],[0,4,5],[1,4,5],[2,3],[0,2,3]]
    Output: 0
    
    Example 2:
    Input: graph = [[1,3],[0],[3],[0,2]]
    Output: 1
    
    Constraints:
    3 <= graph.length <= 50
    1 <= graph[i].length < graph.length
    0 <= graph[i][j] < graph.length
    graph[i][j] != i
    graph[i] is unique.
    The mouse and the cat can always move. 
    

      

    example 1:

    example 2:

    解法:DFS+DP

    状态:

    • POS_mouse
    • POS_cat
    • time(steps)

    dp[m][c][t]:mouse在m节点,cat在c节点,在t步时(以后各种走法之后),是谁输谁赢

    • 0:平局
    • 1:mouse赢
    • 2:cat赢

    选择(状态转移):dp[m][c][t] = ?

    • 当前是mouse走:
      • 若下一步 dp[m_next][c][t+1]
        • 有一种mouse能赢的方法:则 dp[m][c][t] = 1(mouse赢)
        • 所有都不能使得mouse赢,但存在可以平局的方法:则 dp[m][c][t] = 0(平局)
        • 既不能赢,也不能平局,所有可能都是输:则 dp[m][c][t] = 2(mouse输)
    • 当前是cat走:
      • 若下一步  dp[m][c_next][t+1]
        • 有一种cat能赢的方法:则 dp[m][c][t] = 2(cat赢)
        • 所有都不能使得cat赢,但存在可以平局的方法:则 dp[m][c][t] = 0(平局)
        • 既不能赢,也不能平局,所有可能都是输:则 dp[m][c][t] = 1(cat输)

    base:

    • t==2*N,步数超出,则mouse和cat一定重复走以前走过的节点,直接返回平局 0。(无胜负之分)
    • m==0,mouse走到节点0,mouse赢,返回 1。
    • c==m,cat抓到mouse,cat赢,返回 2。

    同时,如果存在已经走过的状态,直接返回保存过的dp[m][c][t]

    初始化所有dp=-1,当非初始值,则证明已经处理过该状态,直接返回。

    代码参考:

     1 class Solution {
     2 public:
     3     //DP:state: pos_mouse, pos_cat, time(step)
     4     //   size:  N,         N,       2*N
     5     //dp[m][c][t]:[ mouse_pos=m, cat_pos=c, step=t ] who wins
     6     // -> 0:tie, 1:mouse win, 2:cat win
     7     //opt:
     8     //case_1: mouse's turn: dp[m][c][t] = dp[m_next][c][t+1]
     9     //        next_step: any route can make to win, mouse will choose. then mouse will win.
    10     //                   no route can make to win, mouse will choose the tie route.
    11     //                   all routes would be lose, mouse definitly lose at end.
    12     //case_2: cat's turn:   dp[m][c][t] = dp[m][c_next][t+1]
    13     //base:
    14     //dp[m][c][2N] = 0:tie
    15     //dp[0][c][t]  = 1:mouse win
    16     //dp[m][m][t]  = 2:cat win
    17     int N;
    18     vector<vector<vector<int>>> dp;
    19     int dfs(vector<vector<int>>& graph, int m, int c, int t) {
    20         if(t==2*N) return 0;//tie
    21         if(dp[m][c][t]!=-1) return dp[m][c][t];
    22         if(m==0) return dp[m][c][t]=1;
    23         if(m==c) return dp[m][c][t]=2;
    24         int who = t%2;
    25         if(who==0) {//who==0: mouse's turn (cause: Start from mouse by t=0) 
    26             bool tie_flg = false;
    27             for(int m_next:graph[m]) {
    28                 int res = dfs(graph, m_next, c, t+1);
    29                 if(res == 1) {//mouse win (最优先)
    30                     return dp[m][c][t] = 1;
    31                 } else if(res != 2) {//mouse tie route (次优先)
    32                     tie_flg = true;
    33                 }
    34             }
    35             //after all next opts: there is no win method:
    36             if(tie_flg) return dp[m][c][t] = 0;//prioritly choose tie route.
    37             return dp[m][c][t] = 2;//mouse lose
    38         } else {//cat's turn
    39             bool tie_flg = false;
    40             for(int c_next:graph[c]) {
    41                 if(c_next==0) continue;
    42                 //it is not allowed for the Cat to travel to the Hole (node 0.)
    43                 int res = dfs(graph, m, c_next, t+1);
    44                 if(res == 2) {//cat win
    45                     return dp[m][c][t] = 2;
    46                 } else if(res != 1) {//cat tie route
    47                     tie_flg = true;
    48                 }
    49             }
    50             //after all next opts: there is no win method:
    51             if(tie_flg) return dp[m][c][t] = 0;//prioritly choose tie route.
    52             return dp[m][c][t] = 1;//cat lose
    53         }
    54     }
    55     int catMouseGame(vector<vector<int>>& graph) {
    56         N = graph.size();
    57         //initialize all cell -> -1
    58         dp.resize(N, vector<vector<int>>(N, vector<int>(2*N, -1)));
    59         return dfs(graph, 1, 2, 0);//POS(mouse)=1, POS(cat)=2, step=0;
    60     }
    61 };
  • 相关阅读:
    获取时间差
    列表添加空字符串
    python提示InsecureRequestWarning
    网络抓包工具
    活动目录相关的面试题(一)
    How to Install Zabbix 4 on CentOS 8 / RHEL 8 in 10 minutes!
    服务器在使用 yum 命令时出现 No match for argument: screen Error: Unable to find a match 错误
    RHEL8/CentOS8的基础防火墙配置-用例
    RHEL8和CentOS8怎么重启网络
    信息安全等级保护等级划分
  • 原文地址:https://www.cnblogs.com/habibah-chang/p/14510633.html
Copyright © 2011-2022 走看看