zoukankan      html  css  js  c++  java
  • 系统吞吐量(TPS)、用户并发量

    PS:下面是性能测试的主要概念和计算公式,记录下:

    一.系统吞度量要素:

      一个系统的吞度量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。

    单个reqeust 对CPU消耗越高,外部系统接口、IO影响速度越慢,系统吞吐能力越低,反之越高。

    系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间

            QPS(TPS):每秒钟request/事务 数量

            并发数: 系统同时处理的request/事务数

            响应时间:  一般取平均响应时间

    (很多人经常会把并发数和TPS理解混淆)

    理解了上面三个要素的意义之后,就能推算出它们之间的关系:

    QPS(TPS)= 并发数/平均响应时间

            一个系统吞吐量通常由QPS(TPS)、并发数两个因素决定,每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了,如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换、内存等等其它消耗导致系统性能下降。

    决定系统响应时间要素

    我们做项目要排计划,可以多人同时并发做多项任务,也可以一个人或者多个人串行工作,始终会有一条关键路径,这条路径就是项目的工期。

    系统一次调用的响应时间跟项目计划一样,也有一条关键路径,这个关键路径是就是系统影响时间;

    关键路径是有CPU运算、IO、外部系统响应等等组成。

  • 相关阅读:
    一 数据库备份与恢复 2 数据库恢复 2.2 数据库重定向与重建
    附录 常用SQL语句 Dynamic SQL
    alt_disk_install 克隆系统rootvg
    Mysql版本升级
    DB29.7 HADR环境升级
    EMC VNX系列存储维护
    保存最开始的flink code,  数据是自动生成而不是通过kafka
    opentsdb restful api使用方法
    flink 和 hbase的链接
    opentsdb
  • 原文地址:https://www.cnblogs.com/hadoop-dev/p/6010696.html
Copyright © 2011-2022 走看看