下面这是基于Android4.2代码的关于Input子系统的笔记。在这篇笔记中,只涉及Android相关的东西,关于Linux内核中对各种输入设备的统一,在本文中不作说明。此外,由于才疏学浅,文中难免有错误的地方,希望各位路过的大神能够予以指出。闲话少叙,先看一张我自己设计的图,如下:
这幅图是为了便于个人理解画出的,里面的注释也比较明白,就不再说明。本文就是以这幅图为基本的思路,简述在Android4.2系统中和Input子系统的相关一些内容。如图,本文将分为以下几个部分叙述:
(0)Input系统的启动
(1)InputReader的功能,以及执行的流程
(2)InputDispatcher的功能,及执行流程
(3)Input子系统中的通信方式是什么?
(4)应用程序是如何接收到并处理事件的
在开始叙述各部分的功能之前,我们还是先说说更个Input系统的来龙去脉,一方面能够知道Input系统从哪儿来,另一方面能对整个系统有个大概的了解,使我们不至于迷失在浩瀚的Android源码中。在Android系统中一说到重要的服务,基本都是要从systemserver进程开始说起,因为他是Android世界的开拓者,创建了Android世界所需要个基础。同样,Input系统也是从systemserver中开始说起,首先创建一个InputManagerService对象,为这个对象设置与WindowManagerService相关的回调函数,然后调用InputManagerService的start函数。
1 inputManager = new InputManagerService(context, wmHandler); 2 inputManager.setWindowManagerCallbacks(wm.getInputMonitor()); 3 inputManager.start();
在InputManagerService中start方法会通过JNI调用,启动Native层的InputReaderThread,InputDispatcherThread线程,从而开始Input系统的运行。InputReaderThread主要是执行和InputReader相关的内容,主要是从EventHub中读取事件,预处理事件,然会是根据policy来处理此事件,最后发送一个消息到InputDispatcher中通知事件的产生。紧接着InputDispatcher会开始事件的分发,通过InputChannel把事件分发给WindowManager或者应用程序。说以一个事件的流程是从 Eventhub ---> InputReader ---> InputDispatcher ---> InputPublisher ---> InputChannel ---> InputConsumer ---> WindowManager or Application.这就是整个事件分发的大致流程。
由这个大致的流程开始,我们逐步来解析Android系统Input的内容。从Input的启动开始,也就是InputManagerService的创建和线程的启动开始。先看InputManagerService的构造函数,代码如下:
1 public InputManagerService(Context context, Handler handler) {//这里的handler是WindowManagerService处理消息专用的线程,InputManagerService会把消息发送到这个线程中loop 2 this.mContext = context; 3 this.mHandler = new InputManagerHandler(handler.getLooper());//而和InputManagerService相关的消息的处理时在这个对象中完成的 4 5 mUseDevInputEventForAudioJack = 6 context.getResources().getBoolean(R.bool.config_useDevInputEventForAudioJack); 7 Slog.i(TAG, "Initializing input manager, mUseDevInputEventForAudioJack=" 8 + mUseDevInputEventForAudioJack); 9 mPtr = nativeInit(this, mContext, mHandler.getLooper().getQueue());//通过JNI调用来启动native层的input系统,然后把返回值存放在mPtr中 10 }
从代码可以看出,InputManagerService的构造是很简单的,只是在最后通过JNI方法初始化了native层的Input系统。接下来我们就看看在native层都做了些什么,代码如下:
1 static jint nativeInit(JNIEnv* env, jclass clazz, 2 jobject serviceObj, jobject contextObj, jobject messageQueueObj) { 3 sp<MessageQueue> messageQueue = android_os_MessageQueue_getMessageQueue(env, messageQueueObj); 4 if (messageQueue == NULL) { 5 jniThrowRuntimeException(env, "MessageQueue is not initialized."); 6 return 0; 7 } 8 //这里实例化了NativeInputManagerService的一个对象,使用的Java层的MessageQueue的Looper,意味着Java层消息和Native消息是在同一个MessageQueue中的 9 NativeInputManager* im = new NativeInputManager(contextObj, serviceObj, 10 messageQueue->getLooper()); 11 im->incStrong(0); 12 return reinterpret_cast<jint>(im);//把新建的NativeInputManager强制转换,返回给Java层 13 }
在native层初始化的时候,创建了一个名叫NativeInputMnager的对象,这个对象是很重要的,因为它主要负责和系统的其他模块交互,而且InputReader和InputDispatcher都是只运行在Native层中,如果需要调用Java函数也是通过这个对象进行的,另外他实现了InputReaderPolicyInterface和InputDispatcherPolicyInterface,是一个重要的Policy。NativeInputManager在构造过程中,完成了InputManager在native基本运行组件的创建,比如创建了EventHub对象,它是事件的Android系统的起源地,所有的事件都是它从驱动中读取出来的;还创建了InputReaderThread线程用来执行InputReader的功能;InputDispatcherThread用来执行InputDispatcher的功能;同时也创建了InputManager来管理EventHub,InputReader,InputReaderThread,InputDispatcher,InputDispatcherThread这些Native运行的基本对象。这些对象的创建过程中并没有非常重要的调用,这里略过代码。不过要注意一点的是NativeInputManager是InputReaderPolicyInterface和InputDispatcherPolicyInterface的子类,因此在构造InputReader和InputDispatcher的时候要用到NativieInputManager对象。
在对象构建完成后,开始执行start方法,让之前创建的这些对象运行起来。start方法也是比较简单的,就是通过JNI调用让native层的Input系统运行起来,然后在Java层把自己列入WatchDog的监视范围内。之后定义下自己需要接受的外部通知等。这个过程看代码的话,比较容易,不再列出。那么到这里位置,整个Input系统就运行起来了,至于其中具体的功能我们再逐步分析。这部分内容叙述完毕。
(1)InputReader的功能,以及执行的流程
从前面的内容我们可以知道,在InputManager的start方法被调用会,会执行两个线程,分别是InputReaderThread和InputDispatcherThread,虽然它们的启动在代码上有先后之分,但是在实际执行过程中是没有先后的,所以先从哪个线程开始解析Input系统不是很重要的。不过,我是按照从事件的产生到分发开始解析的,所以这里我是选择从InputReader开始。InputReader是Android系统中重要的部分,根据Android文档中的描述,主要功能就是:(1) 从EventHub读取事件,这些事件是元事件,即没有经过加工或者仅仅是简单加工的处理的事件;(2)把这些事件加工处理,生成inputEvent事件,这样封装之后的事件,可以满足Android系统的一些需求;(3)把这些事件发送到事件监听器,即QueuedInputListener,这个监听器可以把事件传递给InputDispatcher。下面我们就从线程开始执行的地方一步一步分析这些功能的实现。既然要看InputReader的功能,我就从InputReader的构造函数说起。前面在说到构造InputManager的时候,就创建了InputReader,当时没有介绍起功能和构造方法,我们从这里开始:
1 InputReader::InputReader(const sp<EventHubInterface>& eventHub, 2 const sp<InputReaderPolicyInterface>& policy, 3 const sp<InputListenerInterface>& listener) : 4 mContext(this), mEventHub(eventHub), mPolicy(policy), 5 mGlobalMetaState(0), mGeneration(1), 6 mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX), 7 mConfigurationChangesToRefresh(0) { 8 mQueuedListener = new QueuedInputListener(listener);//在这里创建了一个QueuedInputListener,注意其参数是listener是InputDispatcher 9 10 { // acquire lock 11 AutoMutex _l(mLock); 12 13 refreshConfigurationLocked(0); 14 updateGlobalMetaStateLocked(); 15 } // release lock 16 }
在InputReader创建的时候,这里把InputDispatcher作为参数传递进来,然后以InputDispatcher作为参数构造出了QueuedInputListener对象。所以现在有这么一个关系:InputReader持有一个QueuedInputListener,而QueuedInputListener持有InputDispatcher对象。接下来,我们继续以线程为线索,分析我们的代码,接着看
1 bool InputReaderThread::threadLoop() { 2 mReader->loopOnce(); 3 return true; 4 }
在这里补充一点内容: Android系统在Native层中实现了一个类似于Java中的线程对象,即C++中的Thread类。这个线程类有个特点就是,当线程开始执行后,不一直重复执行threadLoop方法,知道这个线程的强引用计数变为零为止。所以,这里的threadLoop函数会不停地执行下去,也即是mReader->loopOnce()会循环执行下去,每循环一次就能从EventHub中读取出若干事件。下面我们就以一次循环过程为例,分析此线程的执行,loopOnce的代码如下:
1 void InputReader::loopOnce() { 2 int32_t oldGeneration; 3 int32_t timeoutMillis; 4 bool inputDevicesChanged = false; 5 Vector<InputDeviceInfo> inputDevices; 6 ... 7 //如果系统刚刚启动,或者有新的设备加入的话,timeoutMillis一般为0,意味着无需等待,可以立即返回;timeoutMillis一般为-1,意味着无限等待 8 size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); 9 10 { 11 AutoMutex _l(mLock); 12 mReaderIsAliveCondition.broadcast(); 13 14 if (count) { 15 processEventsLocked(mEventBuffer, count);//开始处理读取出来的元事件 16 } 17 18 ... 19 } 20 21 if (inputDevicesChanged) { 22 mPolicy->notifyInputDevicesChanged(inputDevices); 23 } 24 //把QueuedInputListener中的消息全部都开始处理 25 mQueuedListener->flush(); 26 }
整个方法的功能就是,从EventHub中读取出若干事件,然会对这些事件进行预处理,然会把QueuedInputListener中的事件分发出去。这个方法中包含了InputReader的主要功能,所以此线程每循环一次,都会执行完成一次InputReader的主要功能。先说从EventHub读取事件功能:
1.1 从EventHub获取事件
先简单介绍下EvenHub,这个类的主要功能就是主动监视Input驱动的变化,一旦有事件产生,就从产生事件相应的驱动中读取出这个事件。实现这个监视驱动功能,是通过Linux提供的epoll机制来实现。epoll机制简单地说就是高效地I/O多路复用机制,使用epoll_wait来监听所需要的文件描述符的变化,关于epoll的介绍有很多文章,man中也有详细的介绍。EventHub的主要功能是通过epoll_wait来实现的,所以EventHub所在的线程应该会阻塞在epoll_wait方法中,一直等到epoll_wait设置的超时时间。现在我们开始看看EventHub的实现,在EventHub的构造函数中,建立了一个管道,并把这个管道的读端和写端的文件描述符添加到epoll的监视之下,以便于其他的线程或者进程能够使EventHub所在的线程从epoll_wait的阻塞中返回。EventHub在创建完成之后,第一个被调用的方法就是getEvents,而且这个方法也是EventHub的主要功能,对于这个方法需要仔细分析,我们把getEvents方法也分成了三个部分去解析,分别是:打开设备部分;事件读取部分;等待部分。这三个部分中,以事件的读取部分为重点。设备打开部分一般发生在Input系统建立的时候调用,所以在系统启动完成,稳定之后,这部分内容应该不会再被执行的;而等待部分较为简单。不过这些作为系统必不可少的部分,还是要一一说明的,先说设备打开部分吧,代码如下:
1 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) { 2 ... 3 struct input_event readBuffer[bufferSize]; 4 //这是元事件指针,可以指向一系列的事件,这些事件按照数组的方式存放的 5 RawEvent* event = buffer; 6 size_t capacity = bufferSize; 7 bool awoken = false; 8 for (;;) { 9 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 10 //mNeedToReopenDevices = false; mClosingDevices = 0;mNeedToSendFinishedDeviceScan = false;mOpeningDevices = 0 11 //mNeedToScanDevices = true 12 if (mNeedToScanDevices) { 13 mNeedToScanDevices = false; 14 scanDevicesLocked(); 15 mNeedToSendFinishedDeviceScan = true; 16 } 17 ...
EventHub对象在初始化的时候,有很多变量都已经赋值,所以我把代码中判断不成立的代码块暂时都拿掉了,只留下了在Input系统启动时候会执行的内容,也就是scanDevicesLocked方法。在这个方法执行之后,肯定会产生一些设备添加,移除之类的事件,到时候在一一分析。在这个方法中,使用了一个结构体叫RawEvent,使用这个结构体简单地表明事件发生的基本信息,代码如下:
struct RawEvent { nsecs_t when;//事件发生的时间,在getEvents中对于事件时间的处理也是值得关注的 int32_t deviceId;//产生这个事件对应的设备的ID,与具体的硬件无关,其数值和设备打开的顺序有关 int32_t type;//事件的类型 int32_t code;//事件对应的事件码 int32_t value;//事件的内容 };
RawEvent来自两种,一种是在打开设备时自己赋值,不如设备的添加,移除等,这些事件对应的RawEvent都是getEvents自己赋值的,便于InputReader处理;还有一种是来自驱动的产生的事件,由驱动产生的这类事件,在内容中有其自己的定义的类型,就是input_event。 getEvents可以根据input_event产生相应的RawEvent便于InputReader处理。这里要额外说明一点的就是RawEvent的type,如果是由输入设备产生的事件,那么这个type是和输入设备本身的特性相关的,下面列举出Linux中支持的事件类型:
EV_SYN | 用于标识独立的事件,这些独立的事件时在时间或者空间上是可以分离的,比如在多点触摸中 |
EV_KEY | 用于标识按键,按钮或者类似按键的设备状态的变化 |
EV_REL | 用于描述 对于轴线相对变化量,如鼠标向左移动5个单位 |
EV_ABS | 用于描述 对于轴线的绝对变化量, 比如在触摸屏上的触摸点的坐标 |
EV_SW | 标识二进制的开关状态 |
EV_LED | 表示设备上的LED是开or关 |
EV_SND | 用于标识发送声音到设备 |
EV_REP | 表示自动重复的设备 |
V_FF | 用于标识发送强制要回馈的命令到设备 |
EV_PWR | 对于Power键的一个特殊状态或者切换输入 |
EV_FF_STATUS | 用于收到需要强制回馈的设备状态 |
EV_MSC | 如果不是这些已存在的状态,那么就用这个标识 |
这个表格来自于Linux内核文档中的Document/input/event-codes.txt,如果以上有翻译不恰当的地方,可以去参考原文档。上面这些类型是Linux支持的所有的事件类型,一般的一类设备可以支持这些类型中的一个或几个。
在Android系统中,常用的设备由触摸屏,键盘或者鼠标等,这些设备一般是能够产生如下类型的事件:
多点触屏 | 大多是EV_ABS, EV_KEY, EV_SYN,有的还设置了EV_MSC |
键盘 | EV_KEY, EV_SW |
鼠标 | EV_REL, EV_KEY, EV_ABS |
这个表格仅仅是一般性而言,具体情况还需要参考相应的设备驱动文件。这里之所以介绍这些东西,是因为在InputReader在预处理这些事件的时候会使用type这个类型。了解了这些之后,继续看EventHub是如何打开这些设备的。 EventHub是通过扫描/dev/input/目录下所有可用的设备,然后逐一打开这些设备,打开这些设备过程中,EventHub又做了一些Input系统必要的工作,比如构造Device对象,把这些设备加入到epoll的监视队列中等,时间戳的设定等。在构造Device对象的时候,是通过InputDeviceIdentifier来构造的,主要思路就是通过ioctl函数从内容中读取出一些必要的信息,然后把这些信息经过InputDeviceIdentifier存入Device中,然后再通过ioctl函数测试设备的属性,把这些属性信息也存入Device中。代码如下:
1 status_t EventHub::openDeviceLocked(const char *devicePath) { 2 ... 3 InputDeviceIdentifier identifier; 4 5 // 获取设备的名字,如果成功获取到设备的名字,把它存入InputDeviceIdentifier中 6 if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) { 7 //fprintf(stderr, "could not get device name for %s, %s ", devicePath, strerror(errno)); 8 } else { 9 buffer[sizeof(buffer) - 1] = '