要求:将数组中的数划分为两组,使得两个子数组的和的差值最小,数组中的数的取值范围为0<X<100,元素个数也是大于0小于100.如:a[]={2,4,5,6,7},得出的两组数:{2,4,6}和{5,7},abs(sum(a1)-sum(a1))=0;如:{2,5,6,10},abs(sum(2,10)-sum(5,6))=1所以:子数组为:{2,10}和{5,6}。
思路:很容易知道如果选取的某个子数组的和currentSum=sum/2,则这两个子数组的和的差值最小,即从数组中选取某些数字使得其和接近整个数组的1/2.,所以该命题本质上是一个01背包命题,原命题等价于从n各物品中选取若干个,其重量不超过sum/2,且重量达到最大
基于上述思路代码如下:
#include <iostream> using namespace std; const int M = 100; int w[M]; int currentSum[M*M]; bool state[M][M]; int main() { int n; while (scanf("%d ", &n) != EOF) {//输入数组元素个数 int sum = 0; for (int i = 0; i < n; ++i) { scanf("%d", &w[i]); sum += w[i];//sum存储整个数组元素的和 } memset(currentSum, 0, sizeof(currentSum)); memset(state, 0, sizeof(state)); for (int i = 0; i < n; ++i) for (int j = sum/2; j >= w[i]; --j) { if (currentSum[j] < currentSum[j-w[i]] + w[i]) { currentSum[j] =currentSum[j-w[i]] + w[i]; state[i][j] = true; } } printf("%d ", sum - currentSum[sum/2]*2); int i = n, j = sum/2; while (i--) { if (state[i][j]) { printf("%d ", w[i]); j -= w[i]; } } printf(" "); } return 0; }程序运行结果如下: