zoukankan      html  css  js  c++  java
  • 破解极验滑动验证码

    一、介绍

       一些网站会在正常的账号密码认证之外加一些验证码,以此来明确地区分人/机行为,从一定程度上达到反爬的效果,对于简单的校验码Tesserocr就可以搞定,如下

        但一些网站加入了滑动验证码,最典型的要属于极验滑动认证了,极验官网:http://www.geetest.com/,下图是极验的登录界面

     现在极验验证码已经更新到了 3.0 版本,截至 2017 年 7 月全球已有十六万家企业正在使用极验,每天服务响应超过四亿次,广泛应用于直播视频、金融服务、电子商务、游戏娱乐、政府企业等各大类型网站

    对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会让你蛋碎一地,我们可以用selenium驱动浏览器来解决这个问题,大致分为以下几个步骤

    #1、输入账号、密码,然后点击登陆
    #2、点击按钮,弹出没有缺口的图
    #3、针对没有缺口的图片进行截图
    #4、点击滑动按钮,弹出有缺口的图
    #5、针对有缺口的图片进行截图
    #6、对比两张图片,找出缺口,即滑动的位移
    #7、按照人的行为行为习惯,把总位移切成一段段小的位移
    #8、按照位移移动
    #9、完成登录

    二、实现

    安装:selenium+chrome/phantomjs
    
    #安装:Pillow
    Pillow:基于PIL,处理python 3.x的图形图像库.因为PIL只能处理到python 2.x,而这个模块能处理Python3.x,目前用它做图形的很多.
    http://www.cnblogs.com/apexchu/p/4231041.html
    
    C:UsersAdministrator>pip3 install pillow
    C:UsersAdministrator>python3
    Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 18:41:36) [MSC v.1900 64 bit (AMD64)] on win32
    Type "help", "copyright", "credits" or "license" for more information.
    >>> from PIL import Image
    >>>
      1 from selenium import webdriver
      2 from selenium.webdriver import ActionChains
      3 from selenium.webdriver.common.by import By
      4 from selenium.webdriver.common.keys import Keys
      5 from selenium.webdriver.support import expected_conditions as EC
      6 from selenium.webdriver.support.wait import WebDriverWait
      7 from PIL import Image
      8 import time
      9 
     10 def get_snap():
     11     '''
     12     对整个网页截图,保存成图片,然后用PIL.Image拿到图片对象
     13     :return: 图片对象
     14     '''
     15     driver.save_screenshot('snap.png')
     16     page_snap_obj=Image.open('snap.png')
     17     return page_snap_obj
     18 
     19 def get_image():
     20     '''
     21     从网页的网站截图中,截取验证码图片
     22     :return: 验证码图片
     23     '''
     24     img=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_canvas_img')))
     25     time.sleep(2) #保证图片刷新出来
     26     localtion=img.location
     27     size=img.size
     28 
     29     top=localtion['y']
     30     bottom=localtion['y']+size['height']
     31     left=localtion['x']
     32     right=localtion['x']+size['width']
     33 
     34     page_snap_obj=get_snap()
     35     crop_imag_obj=page_snap_obj.crop((left,top,right,bottom))
     36     return crop_imag_obj
     37 
     38 
     39 def get_distance(image1,image2):
     40     '''
     41     拿到滑动验证码需要移动的距离
     42     :param image1:没有缺口的图片对象
     43     :param image2:带缺口的图片对象
     44     :return:需要移动的距离
     45     '''
     46     threshold=60
     47     left=57
     48     for i in range(left,image1.size[0]):
     49         for j in range(image1.size[1]):
     50             rgb1=image1.load()[i,j]
     51             rgb2=image2.load()[i,j]
     52             res1=abs(rgb1[0]-rgb2[0])
     53             res2=abs(rgb1[1]-rgb2[1])
     54             res3=abs(rgb1[2]-rgb2[2])
     55             if not (res1 < threshold and res2 < threshold and res3 < threshold):
     56                 return i-7 #经过测试,误差为大概为7
     57     return i-7 #经过测试,误差为大概为7
     58 
     59 
     60 def get_tracks(distance):
     61     '''
     62     拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
     63     匀变速运动基本公式:
     64     ①v=v0+at
     65     ②s=v0t+½at²
     66     ③v²-v0²=2as
     67 
     68     :param distance: 需要移动的距离
     69     :return: 存放每0.3秒移动的距离
     70     '''
     71     #初速度
     72     v=0
     73     #单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
     74     t=0.3
     75     #位移/轨迹列表,列表内的一个元素代表0.2s的位移
     76     tracks=[]
     77     #当前的位移
     78     current=0
     79     #到达mid值开始减速
     80     mid=distance*4/5
     81 
     82     while current < distance:
     83         if current < mid:
     84             # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
     85             a= 2
     86         else:
     87             a=-3
     88 
     89         #初速度
     90         v0=v
     91         #0.2秒时间内的位移
     92         s=v0*t+0.5*a*(t**2)
     93         #当前的位置
     94         current+=s
     95         #添加到轨迹列表
     96         tracks.append(round(s))
     97 
     98         #速度已经达到v,该速度作为下次的初速度
     99         v=v0+a*t
    100     return tracks
    101 
    102 
    103 try:
    104     driver=webdriver.Chrome()
    105     driver.get('https://account.geetest.com/login')
    106     wait=WebDriverWait(driver,10)
    107 
    108     #步骤一:先点击按钮,弹出没有缺口的图片
    109     button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_radar_tip')))
    110     button.click()
    111 
    112     #步骤二:拿到没有缺口的图片
    113     image1=get_image()
    114 
    115     #步骤三:点击拖动按钮,弹出有缺口的图片
    116     button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_slider_button')))
    117     button.click()
    118 
    119     #步骤四:拿到有缺口的图片
    120     image2=get_image()
    121 
    122     # print(image1,image1.size)
    123     # print(image2,image2.size)
    124 
    125     #步骤五:对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
    126     distance=get_distance(image1,image2)
    127 
    128     #步骤六:模拟人的行为习惯(先匀加速拖动后匀减速拖动),把需要拖动的总距离分成一段一段小的轨迹
    129     tracks=get_tracks(distance)
    130     print(tracks)
    131     print(image1.size)
    132     print(distance,sum(tracks))
    133 
    134 
    135     #步骤七:按照轨迹拖动,完全验证
    136     button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_slider_button')))
    137     ActionChains(driver).click_and_hold(button).perform()
    138     for track in tracks:
    139         ActionChains(driver).move_by_offset(xoffset=track,yoffset=0).perform()
    140     else:
    141         ActionChains(driver).move_by_offset(xoffset=3,yoffset=0).perform() #先移过一点
    142         ActionChains(driver).move_by_offset(xoffset=-3,yoffset=0).perform() #再退回来,是不是更像人了
    143 
    144     time.sleep(0.5) #0.5秒后释放鼠标
    145     ActionChains(driver).release().perform()
    146 
    147 
    148     #步骤八:完成登录
    149     input_email=driver.find_element_by_id('email')
    150     input_password=driver.find_element_by_id('password')
    151     button=wait.until(EC.element_to_be_clickable((By.CLASS_NAME,'login-btn')))
    152 
    153     input_email.send_keys('18611453110@163.com')
    154     input_password.send_keys('linhaifeng123')
    155     # button.send_keys(Keys.ENTER)
    156     button.click()
    157 
    158     import time
    159     time.sleep(200)
    160 finally:
    161     driver.close()
    View Code

    案例:

      1 from selenium import webdriver
      2 from selenium.webdriver import ActionChains
      3 from selenium.webdriver.common.by import By
      4 from selenium.webdriver.common.keys import Keys
      5 from selenium.webdriver.support import expected_conditions as EC
      6 from selenium.webdriver.support.wait import WebDriverWait
      7 from PIL import Image
      8 import time
      9 
     10 def get_snap():
     11     driver.save_screenshot('full_snap.png')
     12     page_snap_obj=Image.open('full_snap.png')
     13     return page_snap_obj
     14 
     15 def get_image():
     16     img=driver.find_element_by_class_name('geetest_canvas_img')
     17     time.sleep(2)
     18     location=img.location
     19     size=img.size
     20 
     21     left=location['x']
     22     top=location['y']
     23     right=left+size['width']
     24     bottom=top+size['height']
     25 
     26     page_snap_obj=get_snap()
     27     image_obj=page_snap_obj.crop((left,top,right,bottom))
     28     # image_obj.show()
     29     return image_obj
     30 
     31 def get_distance(image1,image2):
     32     start=57
     33     threhold=60
     34 
     35     for i in range(start,image1.size[0]):
     36         for j in range(image1.size[1]):
     37             rgb1=image1.load()[i,j]
     38             rgb2=image2.load()[i,j]
     39             res1=abs(rgb1[0]-rgb2[0])
     40             res2=abs(rgb1[1]-rgb2[1])
     41             res3=abs(rgb1[2]-rgb2[2])
     42             # print(res1,res2,res3)
     43             if not (res1 < threhold and res2 < threhold and res3 < threhold):
     44                 return i-7
     45     return i-7
     46 
     47 def get_tracks(distance):
     48     distance+=20 #先滑过一点,最后再反着滑动回来
     49     v=0
     50     t=0.2
     51     forward_tracks=[]
     52 
     53     current=0
     54     mid=distance*3/5
     55     while current < distance:
     56         if current < mid:
     57             a=2
     58         else:
     59             a=-3
     60 
     61         s=v*t+0.5*a*(t**2)
     62         v=v+a*t
     63         current+=s
     64         forward_tracks.append(round(s))
     65 
     66     #反着滑动到准确位置
     67     back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20
     68 
     69     return {'forward_tracks':forward_tracks,'back_tracks':back_tracks}
     70 
     71 try:
     72     # 1、输入账号密码回车
     73     driver = webdriver.Chrome()
     74     driver.implicitly_wait(3)
     75     driver.get('https://passport.cnblogs.com/user/signin')
     76 
     77     username = driver.find_element_by_id('input1')
     78     pwd = driver.find_element_by_id('input2')
     79     signin = driver.find_element_by_id('signin')
     80 
     81     username.send_keys('linhaifeng')
     82     pwd.send_keys('xxxxx')
     83     signin.click()
     84 
     85     # 2、点击按钮,得到没有缺口的图片
     86     button = driver.find_element_by_class_name('geetest_radar_tip')
     87     button.click()
     88 
     89     # 3、获取没有缺口的图片
     90     image1 = get_image()
     91 
     92     # 4、点击滑动按钮,得到有缺口的图片
     93     button = driver.find_element_by_class_name('geetest_slider_button')
     94     button.click()
     95 
     96     # 5、获取有缺口的图片
     97     image2 = get_image()
     98 
     99     # 6、对比两种图片的像素点,找出位移
    100     distance = get_distance(image1, image2)
    101 
    102     # 7、模拟人的行为习惯,根据总位移得到行为轨迹
    103     tracks = get_tracks(distance)
    104     print(tracks)
    105 
    106     # 8、按照行动轨迹先正向滑动,后反滑动
    107     button = driver.find_element_by_class_name('geetest_slider_button')
    108     ActionChains(driver).click_and_hold(button).perform()
    109 
    110     # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
    111     for track in tracks['forward_tracks']:
    112         ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()
    113 
    114     # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
    115     time.sleep(0.5)
    116     for back_track in tracks['back_tracks']:
    117         ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()
    118 
    119     # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
    120     ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
    121     ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
    122 
    123     # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
    124     time.sleep(0.5)
    125     ActionChains(driver).release().perform()
    126 
    127     time.sleep(10)  # 睡时间长一点,确定登录成功
    128 finally:
    129     driver.close()
    破解博客园后台登录
      1 from selenium import webdriver
      2 from selenium.webdriver import ActionChains
      3 from selenium.webdriver.common.by import By
      4 from selenium.webdriver.common.keys import Keys
      5 from selenium.webdriver.support import expected_conditions as EC
      6 from selenium.webdriver.support.wait import WebDriverWait
      7 from PIL import Image
      8 import time
      9 
     10 def get_snap(driver):
     11     driver.save_screenshot('full_snap.png')
     12     page_snap_obj=Image.open('full_snap.png')
     13     return page_snap_obj
     14 
     15 def get_image(driver):
     16     img=driver.find_element_by_class_name('geetest_canvas_img')
     17     time.sleep(2)
     18     location=img.location
     19     size=img.size
     20 
     21     left=location['x']
     22     top=location['y']
     23     right=left+size['width']
     24     bottom=top+size['height']
     25 
     26     page_snap_obj=get_snap(driver)
     27     image_obj=page_snap_obj.crop((left,top,right,bottom))
     28     # image_obj.show()
     29     return image_obj
     30 
     31 def get_distance(image1,image2):
     32     start=57
     33     threhold=60
     34 
     35     for i in range(start,image1.size[0]):
     36         for j in range(image1.size[1]):
     37             rgb1=image1.load()[i,j]
     38             rgb2=image2.load()[i,j]
     39             res1=abs(rgb1[0]-rgb2[0])
     40             res2=abs(rgb1[1]-rgb2[1])
     41             res3=abs(rgb1[2]-rgb2[2])
     42             # print(res1,res2,res3)
     43             if not (res1 < threhold and res2 < threhold and res3 < threhold):
     44                 return i-7
     45     return i-7
     46 
     47 def get_tracks(distance):
     48     distance+=20 #先滑过一点,最后再反着滑动回来
     49     v=0
     50     t=0.2
     51     forward_tracks=[]
     52 
     53     current=0
     54     mid=distance*3/5
     55     while current < distance:
     56         if current < mid:
     57             a=2
     58         else:
     59             a=-3
     60 
     61         s=v*t+0.5*a*(t**2)
     62         v=v+a*t
     63         current+=s
     64         forward_tracks.append(round(s))
     65 
     66     #反着滑动到准确位置
     67     back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20
     68 
     69     return {'forward_tracks':forward_tracks,'back_tracks':back_tracks}
     70 
     71 def crack(driver): #破解滑动认证
     72     # 1、点击按钮,得到没有缺口的图片
     73     button = driver.find_element_by_class_name('geetest_radar_tip')
     74     button.click()
     75 
     76     # 2、获取没有缺口的图片
     77     image1 = get_image(driver)
     78 
     79     # 3、点击滑动按钮,得到有缺口的图片
     80     button = driver.find_element_by_class_name('geetest_slider_button')
     81     button.click()
     82 
     83     # 4、获取有缺口的图片
     84     image2 = get_image(driver)
     85 
     86     # 5、对比两种图片的像素点,找出位移
     87     distance = get_distance(image1, image2)
     88 
     89     # 6、模拟人的行为习惯,根据总位移得到行为轨迹
     90     tracks = get_tracks(distance)
     91     print(tracks)
     92 
     93     # 7、按照行动轨迹先正向滑动,后反滑动
     94     button = driver.find_element_by_class_name('geetest_slider_button')
     95     ActionChains(driver).click_and_hold(button).perform()
     96 
     97     # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
     98     for track in tracks['forward_tracks']:
     99         ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()
    100 
    101     # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
    102     time.sleep(0.5)
    103     for back_track in tracks['back_tracks']:
    104         ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()
    105 
    106     # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
    107     ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
    108     ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
    109 
    110     # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
    111     time.sleep(0.5)
    112     ActionChains(driver).release().perform()
    113 
    114 def login_cnblogs(username,password):
    115     driver = webdriver.Chrome()
    116     try:
    117         # 1、输入账号密码回车
    118         driver.implicitly_wait(3)
    119         driver.get('https://passport.cnblogs.com/user/signin')
    120 
    121         input_username = driver.find_element_by_id('input1')
    122         input_pwd = driver.find_element_by_id('input2')
    123         signin = driver.find_element_by_id('signin')
    124 
    125         input_username.send_keys(username)
    126         input_pwd.send_keys(password)
    127         signin.click()
    128 
    129         # 2、破解滑动认证
    130         crack(driver)
    131 
    132         time.sleep(10)  # 睡时间长一点,确定登录成功
    133     finally:
    134         driver.close()
    135 
    136 if __name__ == '__main__':
    137     login_cnblogs(username='linhaifeng',password='xxxx')
    138 
    139 修订版
    修订版

    用类封装的版本

      1 import time
      2 import random
      3 
      4 from selenium.webdriver import ActionChains
      5 from selenium.webdriver.common.by import By
      6 from PIL import Image
      7 
      8 
      9 # def simulate_reaction(func):
     10 #     """模拟人类的反应时间"""
     11 #     from functools import wraps
     12 #
     13 #     @wraps
     14 #     def inner(self, *args, **kwargs):
     15 #         time.sleep(random.uniform(0.2, 1))
     16 #         ret = func(self, *args, **kwargs)
     17 #         return ret
     18 #     return inner
     19 
     20 
     21 class SVCR:
     22     """识别滑动验证码   极验验证"""
     23 
     24     def __init__(self, driver):
     25         self.driver = driver
     26         self.get_full_img = True
     27 
     28     # @simulate_reaction
     29     def run(self):
     30         """执行识别流程"""
     31         # 1. 点击按钮开始验证
     32         self.click_start_btn()
     33 
     34         # 2. 根据验证类型验证
     35         return self.judge_and_auth()
     36 
     37     def judge_and_auth(self):
     38         """判断验证类型并执行相应的验证方法"""
     39         if True:
     40             return self.auth_slide()
     41         else:
     42             pass
     43 
     44     def auth_slide(self):
     45 
     46         def get_distance(img1, img2):
     47             """计算滑动距离"""
     48             threshold = 60
     49             # 忽略可动滑块部分
     50             start_x = 57
     51 
     52             for i in range(start_x, img1.size[0]):
     53                 for j in range(img1.size[1]):
     54                     rgb1 = img1.load()[i, j]
     55                     rgb2 = img2.load()[i, j]
     56                     res1 = abs(rgb1[0] - rgb2[0])
     57                     res2 = abs(rgb1[1] - rgb2[1])
     58                     res3 = abs(rgb1[2] - rgb2[2])
     59                     if not (res1 < threshold and res2 < threshold and res3 < threshold):
     60                         return i - 7  # 经过测试,误差为大概为7
     61 
     62         def get_tracks(distance):
     63             """
     64             制造滑动轨迹
     65 
     66             策略:匀加速再匀减速,超过一些,再回调,左右小幅度震荡
     67             """
     68 
     69             v = 0
     70             current = 0
     71             t = 0.2
     72             tracks = []
     73 
     74             # 正向滑动
     75             while current < distance+10:
     76                 if current < distance*2/3:
     77                     a = 2
     78                 else:
     79                     a = -3
     80                 s = v*t + 0.5*a*(t**2)
     81                 current += s
     82                 tracks.append(round(s))
     83                 v = v + a*t
     84 
     85             # 往回滑动
     86             current = 0
     87             while current < 13:
     88                 if current < distance*2/3:
     89                     a = 2
     90                 else:
     91                     a = -3
     92                 s = v*t + 0.5*a*(t**2)
     93                 current += s
     94                 tracks.append(-round(s))
     95                 v = v + a*t
     96 
     97             # 最后修正
     98             tracks.extend([2, 2, -3, 2])
     99 
    100             return tracks
    101 
    102         # 1. 截取完整图片
    103         if self.get_full_img:
    104             time.sleep(2)            # 等待图片加载完毕
    105             img_before = self.get_img()
    106         else:
    107             img_before = self._img_before
    108 
    109         # 2. 点击出现缺口图片
    110         slider_btn = self.driver.find_element_by_class_name("geetest_slider_button")
    111         slider_btn.click()
    112 
    113         # 3. 截取缺口图片
    114         time.sleep(2)            # 等待图片加载完毕
    115         img_after = self.get_img()
    116 
    117         # 4. 生成移动轨迹
    118         tracks = get_tracks(get_distance(img_before, img_after))
    119 
    120         # 5. 模拟滑动
    121         slider_btn = self.driver.find_element_by_class_name("geetest_slider_button")
    122         ActionChains(self.driver).click_and_hold(slider_btn).perform()
    123         for track in tracks:
    124             ActionChains(self.driver).move_by_offset(xoffset=track, yoffset=0).perform()
    125 
    126         # 6. 释放鼠标
    127         time.sleep(0.5)  # 0.5秒后释放鼠标
    128         ActionChains(self.driver).release().perform()
    129 
    130         # 7. 验证是否成功
    131 
    132         time.sleep(2)
    133         div_tag = self.driver.find_element_by_class_name("geetest_fullpage_click")
    134         if "display: block" in div_tag.get_attribute("style"):
    135             '''判断模块对话框是否存在,如果存在就说明没有验证成功,"display: block",重新去验证'''
    136             self.get_full_img = False
    137             setattr(self, "_img_before", img_before)
    138             return self.auth_slide()
    139         else:
    140             #如果验证成功"display: none"
    141             time.sleep(1000)
    142             return True
    143 
    144     # @simulate_reaction
    145     def click_start_btn(self, search_style="CLASS_NAME", search_content="geetest_radar_tip"):
    146         """找到开始按钮并点击"""
    147         btn = getattr(self.driver, "find_element")(getattr(By, search_style), search_content)
    148         btn.click()
    149 
    150     def get_img(self):
    151         """截取图片"""
    152         div_tag = self.driver.find_element_by_class_name("geetest_slicebg")
    153 
    154         # 计算截取图片大小
    155         img_pt = div_tag.location       # {'x': 296, 'y': 15}
    156         img_size = div_tag.size         # {'height': 159, 'width': 258}
    157         img_box = (img_pt["x"], img_pt["y"], img_pt["x"] + img_size["width"], img_pt["y"] + img_size["height"])
    158 
    159         # 保存当前浏览页面
    160         self.driver.save_screenshot("snap.png")
    161 
    162         # 截取目标图片
    163         img = Image.open("snap.png")
    164         return img.crop(img_box)
    svcr
     1 from selenium import webdriver
     2 
     3 from svcr import SVCR
     4 
     5 
     6 def auth():
     7     driver = webdriver.Chrome()
     8     # browser.get(url)
     9     driver.get("https://passport.cnblogs.com/user/signin")  #请求页面
    10     driver.implicitly_wait(3)
    11     # 第一步:输入账号、密码,然后点击登陆
    12     input_name = driver.find_element_by_id('input1')  #找到输入用户名的框
    13     input_pwd = driver.find_element_by_id('input2')  #找到输入密码的框
    14     input_button = driver.find_element_by_id('signin')  #找到按钮
    15     input_name.send_keys("name")#博客园的账号
    16     input_pwd.send_keys("pwd")#博客园的密码
    17     input_button.click()  #进行点击
    18     return  driver
    19 
    20 def main():
    21     driver=auth()  #进行验证,
    22     _auth = SVCR(driver)
    23     _auth.run()
    24 
    25 if __name__ == '__main__':
    26     main()
    使用类
  • 相关阅读:
    根据表生成接收(zml)
    删除指定日期,指定设备的排产记录(zml)
    1029 Median
    1027 Colors in Mars (20 分)进制转换
    1028 List Sorting 排序
    1025 PAT Ranking
    1024 Palindromic Number(大数加法)
    1023 Have Fun with Numbers
    1022 Digital Library
    逆序打印乘法表
  • 原文地址:https://www.cnblogs.com/haiyan123/p/8311377.html
Copyright © 2011-2022 走看看