zoukankan      html  css  js  c++  java
  • JPMML解析PMML模型并导入数据进行分析生成结果

    JPMML解析Random Forest模型并使用其预测分析

    导入Jar包

    maven 的pom.xml文件中添加jpmml的依赖

    <dependency>
            <groupId>org.jpmml</groupId>
            <artifactId>pmml-evaluator</artifactId>
            <version>1.3.7</version>
    </dependency>

    具体实现代码

    模型读取类

    import java.io.*;
    import java.nio.charset.Charset;
    import java.util.*;
    
    import com.google.common.io.Files;
    import org.dmg.pmml.FieldName;
    
    /**
     * 使用模型
     * @author biantech
     *
     */
    public class PmmlCalc {
        final static String utf8="utf-8";
        public static void main(String[] args) throws IOException {
            if(args.length < 2){
                System.out.println("参数个数不匹配");
            }
            //文件生成路径
            String pmmlPath = args[0];
            String modelArgsFilePath = args[1];
            PmmlInvoker invoker = new PmmlInvoker(pmmlPath);
            List<Map<FieldName, String>> paramList = readInParams(modelArgsFilePath);
            int lineNum = 0;  //当前处理行数
            File file = new File("result.txt");
            for(Map<FieldName, String> param : paramList){
                lineNum++;
                //System.out.println("======当前行: " + lineNum + "=======");
                Files.append("======当前行: " + lineNum + "=======",file,Charset.forName(utf8));
                Map<FieldName, ?> result = invoker.invoke(param);
                Set<FieldName> keySet = result.keySet();  //获取结果的keySet
                for(FieldName fn : keySet){
                    String tempString = result.get(fn).toString()+"
    ";
                    Files.append(tempString,file,Charset.forName(utf8));
                }
            }
            System.out.println("resultFile="+file.getAbsolutePath());
        }
    
        /**
         * 读取参数文件
         * @param filePath 文件路径
         * @return
         * @throws IOException
         */
        public static List<Map<FieldName,String>> readInParams(String filePath) throws IOException{
            InputStream is;
            is = PmmlCalc.class.getClassLoader().getResourceAsStream(filePath);
            if(is==null){
                is = new FileInputStream(filePath);
            }
            InputStreamReader isreader = new InputStreamReader(is);
            BufferedReader br = new BufferedReader(isreader);
            String[] nameArr = br.readLine().split(",");  //读取表头的名字
            ArrayList<Map<FieldName,String>> list = new ArrayList<>();
            String paramLine;  //一行参数
            //循环读取  每次读取一行数据
            while((paramLine = br.readLine()) != null){
                Map<FieldName,String> map = new HashMap<>();
                String[] paramLineArr = paramLine.split(",");
                for(int i=0; i<paramLineArr.length; i++){//一次循环处理一行数据
                    map.put(new FieldName(nameArr[i]), paramLineArr[i]); //将表头和值组成map 加入list中
                }
                list.add(map);
            }
            is.close();
            return list;
        }
    }

    调用执行类:PmmlInvoker

    import java.io.FileInputStream;
    import java.io.IOException;
    import java.io.InputStream;
    import java.util.Map;
    import javax.xml.bind.JAXBException;
    import org.dmg.pmml.FieldName;
    import org.dmg.pmml.PMML;
    import org.jpmml.evaluator.ModelEvaluator;
    import org.jpmml.evaluator.ModelEvaluatorFactory;
    import org.jpmml.model.PMMLUtil;
    import org.xml.sax.SAXException;
    /**
     * 读取pmml 获取模型
     * @author biantech
     *
     */
    public class PmmlInvoker {
        private ModelEvaluator modelEvaluator;
        // 通过文件读取模型
        public PmmlInvoker(String pmmlFileName) {
            PMML pmml = null;
            InputStream is = null;
            try {
                if (pmmlFileName != null) {
                    is = PmmlInvoker.class.getClassLoader().getResourceAsStream(pmmlFileName);
                    if(is==null){
                        is = new FileInputStream(pmmlFileName);
                    }
                    pmml = PMMLUtil.unmarshal(is);
                }
                this.modelEvaluator = ModelEvaluatorFactory.newInstance().newModelEvaluator(pmml);
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                try {
                    if(is!=null)
                        is.close();
                } catch (Exception localIOException3) {
                    localIOException3.printStackTrace();
                }
            }
            this.modelEvaluator.verify();
            System.out.println("模型读取成功");
        }
    
        // 通过输入流读取模型
        public PmmlInvoker(InputStream is) {
            PMML pmml;
            try {
                pmml = PMMLUtil.unmarshal(is);
                try {
                    is.close();
                } catch (IOException localIOException) {
    
                }
                this.modelEvaluator = ModelEvaluatorFactory.newInstance().newModelEvaluator(pmml);
            } catch (SAXException e) {
                pmml = null;
            } catch (JAXBException e) {
                pmml = null;
            } finally {
                try {
                    is.close();
                } catch (IOException localIOException3) {
                }
            }
            this.modelEvaluator.verify();
        }
    
        public Map<FieldName, String> invoke(Map<FieldName, String> paramsMap) {
            return this.modelEvaluator.evaluate(paramsMap);
        }
    }

    如何运行

    1. mvn package  命令生成 jpmml-parser-1-jar-with-dependencies.jar
    2. 将pmml文件, 数据集文件,jar 放在同一个目录下.(如 demo-model.pmml ,demo-data.csv)
    3. 使用命令行运行

      java -jar jpmml-parser-1-jar-with-dependencies.jar demo-model.pmml demo-data.csv

    4. 运行结束后会生成一个result.txt,里面存储的是对数据的预测分析结果
    ======当前行: 1=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
    setosa
    1.0
    0.0
    0.0
    ======当前行: 2=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
    setosa
    1.0
    0.0
    0.0
    ======当前行: 3=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
    setosa
    1.0
    0.0
    0.0
    ======当前行: 4=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
    setosa
    1.0
    0.0
    0.0
    ======当前行: 5=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
    setosa
    1.0
    0.0
    0.0
    ======当前行: 6=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
    setosa
    1.0
    0.0
    0.0

    具体源代码请看如下地址

    https://github.com/biantech/jpmml-parser

     
  • 相关阅读:
    k8s与监控--解读prometheus监控kubernetes的配置文件
    一天学习k8s
    Kubernetes入门:Pod、节点、容器和集群
    skywalking的核心概念
    skywalking的插件管理agent管理
    skywalking7 源码解析 (3) :agent启动服务分析以及性能影响
    HyperLedger Fabric 多机部署(一)
    Hyperledger Fabric 替换couchDB
    Hyperledger Fabric (1.0)环境部署 chaincode【转】
    Hyperledger Fabric 第一次安装
  • 原文地址:https://www.cnblogs.com/halberts/p/9028919.html
Copyright © 2011-2022 走看看