zoukankan      html  css  js  c++  java
  • 金融数据指标(历史移动波动率,均值)

    1.导入函数

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import tushare as ts
    import math

    2. 数据获取

    data = ts.get_hist_data('000012',start='2015-06-23',end='2017-11-16')

    3.移动平均值

    # 滚动窗口的使用
    data['42d']= pd.rolling_mean(data['close'],window=42)
    data['252d'] =pd.rolling_mean(data['close'],window=252)
    print(data[['close','42d','252d']].tail())

    data[['close','42d','252d']].plot(figsize=(8,5))
    plt.show()

    4.移动历史波动

    data['return']=np.log(data['close']/data['close'].shift(1))
    data['mov_vol'] = pd.rolling_std(data['return'],window=252)*math.sqrt(252)
    data[['close','return','mov_vol']].plot(subplots=True,style='b',figsize=(8,7))
    plt.show()

  • 相关阅读:
    面向对象编程
    面向对象编程进阶
    pycharm常用快捷键
    面向对象
    深拷贝和浅拷贝
    hashlib模块
    日志配置
    常用模块大全
    正则详解
    软件目录规范
  • 原文地址:https://www.cnblogs.com/hanbb/p/7868627.html
Copyright © 2011-2022 走看看