zoukankan      html  css  js  c++  java
  • 一元模型拟合(OLS和插值np拟合)

    一,使用OLS拟合

    import pandas as pd
    import statsmodels.api as sm
    # 数据的导入
    data = pd.read_table("E:\python\part 2\017\TRD_Index.txt",sep='	')
    
    # 目标数据的提取
    
    # 根据 行标签 提取数据
    sh_data = data[data['Indexcd']==1]
    sz_data = data[data.Indexcd==399106]
    # 提取 列 数据
    sh_ret = sh_data.Retindex
    sz_ret = sz_data['Retindex']
    # 索引一致化
    # print(sh_ret.index)
    # print(sz_ret.index)
    sz_ret.index = sh_ret.index
    
    # 构造回归模型
    model = sm.OLS(sh_ret,sm.add_constant(sz_ret)).fit()
    print(model.summary())

    模型结果:

    OLS Regression Results                            
    ==============================================================================
    Dep. Variable:               Retindex   R-squared:                       0.825
    Model:                            OLS   Adj. R-squared:                  0.825
    Method:                 Least Squares   F-statistic:                     5698.
    Date:                Thu, 14 Dec 2017   Prob (F-statistic):               0.00
    Time:                        19:11:39   Log-Likelihood:                 4520.3
    No. Observations:                1211   AIC:                            -9037.
    Df Residuals:                    1209   BIC:                            -9026.
    Df Model:                           1                                         
    Covariance Type:            nonrobust                                         
    ==============================================================================
                     coef    std err          t      P>|t|      [95.0% Conf. Int.]
    ------------------------------------------------------------------------------
    const         -0.0003      0.000     -1.747      0.081        -0.001  3.58e-05
    Retindex       0.7603      0.010     75.487      0.000         0.741     0.780
    ==============================================================================
    Omnibus:                      154.029   Durbin-Watson:                   1.821
    Prob(Omnibus):                  0.000   Jarque-Bera (JB):              382.039
    Skew:                           0.701   Prob(JB):                     1.10e-83
    Kurtosis:                       5.367   Cond. No.                         60.5
    ==============================================================================
    
    Warnings:
    [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
    
    Process finished with exit code 0
    1. 可以得出R的平方为:0.825,可以解释82.5%的方差。
    2. 截距项为-0.0003,p值为0.081,无法通过通过置信度为0.05的检验,可以推断该模型不含截距项,即为0.
    3. 斜率为0.7603,通过检验,显著不为0.
    4. 模型为:sh_ret = -0.0003 + 0.7603 sz_ret + e

     绘图比较:

    # 绘图
    # 原始数据和拟合数据的对比
    plt.scatter(sz_ret.values,sh_ret.values,color='b')
    plt.plot(sz_ret.values,model.fittedvalues,color='r')
    plt.show()

    拟合检验:

    # 拟合检验
    
    # 拟合值和残余项的检验(随机分布)
    plt.scatter(model.fittedvalues,model.resid,color = 'g')
    plt.xlabel('nihezhi',size =20)
    plt.ylabel('cancha',size=20)
    plt.show()
    
    # 拟合值和残余项的检验(水平的宽度一致的条带)
    plt.scatter(model.fittedvalues,model.resid**2,color = 'g')
    plt.xlabel('nihezhi',size =20)
    plt.ylabel('cancha',size=20)
    plt.show()
    
    
    # 正态性检验
    # sm.qqplot(model.resid_pearson,stats.norm,line='45')

    二,使用np的多项式拟合。

    import pandas as pd
    import statsmodels.api as sm
    import numpy as np
    import matplotlib.pyplot as plt
    # 数据的导入
    data = pd.read_table("E:\python\part 2\017\TRD_Index.txt",sep='	')
    
    # 目标数据的提取
    
    # 根据 行标签 提取数据
    sh_data = data[data['Indexcd']==1]
    sz_data = data[data.Indexcd==399106]
    # 提取 列 数据
    sh_ret = sh_data.Retindex
    sz_ret = sz_data['Retindex']
    # 索引一致化
    # print(sh_ret.index)
    # print(sz_ret.index)
    sz_ret.index = sh_ret.index
    
    # 回归拟合
    reg = np.polyfit(sz_ret.values,sh_ret.values,deg=1)
    print(reg)                # 查看模型的参数
    reg_fc = np.poly1d(reg)
    print(reg_fc)             # 查看回归方程
    
    # 查看拟合值
    ry = np.polyval(reg,sz_ret.values)
    print(ry[:5])
    
    # 绘图
    plt.scatter(sz_ret.values,sh_ret.values,color="b")
    plt.plot(sz_ret.values,ry,color='r')
    plt.show()

    对比OLS拟合可以看出:

    1. 拟合方程相同。
    2. 绘制的图形也是相同的。
    3. OLS拟合的结果更为专业。
  • 相关阅读:
    【Linux笔记】Linux目录结构
    《Effective C#》快速笔记(五)-
    《Effective C#》快速笔记(四)- 使用框架
    《Effective C#》快速笔记(三)- 使用 C# 表达设计
    《Effective C#》快速笔记(二)- .NET 资源托管
    《Effective C#》快速笔记(一)- C# 语言习惯
    Visual Studio 数据库架构比较
    C# 反射与dynamic最佳组合
    C# 调用WebApi
    基于微软开发平台构建和使用私有NuGet托管库
  • 原文地址:https://www.cnblogs.com/hanbb/p/8039925.html
Copyright © 2011-2022 走看看