zoukankan      html  css  js  c++  java
  • 奇妙的算法之LCS妙解

                                                                          LCS算法妙解

    LCS问题简述:最长公共子序列

    一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则S 称为已知序列的最长公共子序列。

    LCS问题的分支:最长公共子串与最长公共子序列

    子串(Substring)是串的一个连续的部分,子序列(Subsequence)则是从不改变序列的顺序,而从序列中去掉任意的元素而获得的新序列;更简略地说,前者(子串)的字符的位置必须连续,后者(子序列LCS)则不必。比如字符串acdfg同akdfc的最长公共子串为df,而他们的最长公共子序列是adf。

    LCS解题策略:

    one:穷举法。。。复杂度不再多说,想想2的N次方就感到可怕;

    two:矩阵,也就是动态规划节LCS问题,也就是今天咱的标题;

    下面来细讲the twith idea:

     由此图可以看出此经典算法的思路;

    下面是代码,方便大家理解:

     1 #include<stdio.h>
     2 #include<string.h>
     3 #define MAX(a,b) (a>b?a:b)
     4 const int MAXN=1010;
     5 int dp[MAXN][MAXN];
     6 char a[MAXN],b[MAXN];
     7 int main(){
     8 while(~scanf("%s%s",a+1,b+1)){
     9     memset(dp,0,sizeof(dp));
    10     int i,j;
    11     for( i=1;a[i];i++){
    12         for(j=1;b[j];j++){
    13             if(a[i]==b[j])dp[i][j]=dp[i-1][j-1]+1;
    14             else dp[i][j]=MAX(dp[i][j-1],dp[i-1][j]);
    15         }
    16     }
    17     printf("%d
    ",dp[i-1][j-1]);
    18 }
    19 return 0;}

    此递归关系为:

    1. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;
    2. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;
    3. 若xm≠yn且zk≠yn ,则Z是X和Yn-1的最长公共子序列。

    此算法时间复杂度为n*m,空间复杂度也是n*m;

    另外若要记录路径就比较复杂了;

    lcs解决lis问题:

    需要先排序,然后与原数组求最长公共子序列;

    下面是道题poj上的,就用到了此题的思想:

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 43194   Accepted: 17514

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    还有南阳oj上面有道最长公共子序列更是LCS的模板;

  • 相关阅读:
    Mysql常见索引介绍
    Mysql字段修饰符(约束)
    使用select和show命令查看mysql数据库系统信息
    Mysql5.7数据库介绍
    对Mysql数据表本身进行操作
    各种修改Mysql字符集
    Mysql的安全配置向导命令mysql_secure_installation
    firewalld介绍
    CentOS7使用yum安装mysql5.7
    利用ASP.NET一般处理程序动态生成Web图像(转)
  • 原文地址:https://www.cnblogs.com/handsomecui/p/4717444.html
Copyright © 2011-2022 走看看