zoukankan      html  css  js  c++  java
  • Truck History(kruskal+prime)

    Truck History

    Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
    Total Submission(s) : 59   Accepted Submission(s) : 21
    Problem Description
    Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types were derived, and so on.

    Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as
    1/Σ(to,td)d(to,td)

    where the sum goes over all pairs of types in the derivation plan such that to is the original type and td the type derived from it and d(to,td) is the distance of the types.
    Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan.
     
    Input
    The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.
     
    Output
    For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.
     
    Sample Input
    4 aaaaaaa baaaaaa abaaaaa aabaaaa 0
     题解:超时到爆,今天老是因为qsort出错,无语了额,最终还是会长帮忙检查了出来,哎~~~,qsort。。。。
    kruskal代码:
     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<stdlib.h>
     4 #include <algorithm>
     5 using namespace std;
     6 const int MAXN=2010;
     7 
     8 int pre[MAXN],anser,num,N;
     9 
    10 struct Node{
    11     int s,e,dis;
    12 };
    13 
    14 Node dt[MAXN*MAXN];
    15 char str[MAXN][10];
    16 
    17 int gd(char *a,char *b){
    18     int t=0;
    19     for(int i=0;a[i];i++){
    20         if(a[i]!=b[i])t++;
    21     }
    22     return t;
    23 }
    24 
    25 int find(int x){
    26     //return pre[x]= x==pre[x]?x:find(pre[x]);
    27     int r=x;
    28     while(r!=pre[r])r=pre[r];
    29     int i=x,j;
    30     while(i!=r)j=pre[i],pre[i]=r,i=j;
    31     return r;
    32 }
    33 /*void merge(Node a){
    34     int f1,f2;
    35     if(num==N)return;
    36     if(pre[a.s]==-1)pre[a.s]=a.s;
    37     if(pre[a.e]==-1)pre[a.e]=a.e;
    38     f1=find(a.s);f2=find(a.e);
    39     if(f1!=f2){num++;
    40             pre[f1]=f2;
    41         anser+=a.dis;
    42     }
    43 }*/
    44 void initial(){
    45     memset(pre,-1,sizeof(pre));
    46     //memset(dt,0,sizeof(dt));
    47     //memset(str,0,sizeof(str));
    48     anser=0;
    49 }
    50 
    51 //int cmp(const void *a,const void *b){
    52 //    if((*(Node *)a).dis<(*(Node *)b).dis)return -1;
    53 //    else return 1;
    54 //}
    55 
    56 int cmp(Node a, Node b){
    57     return a.dis < b.dis;
    58 }
    59 
    60 int main(){
    61         while(scanf("%d",&N),N){
    62             num=1;
    63             initial();
    64             for(int i=0;i<N;i++){
    65                 scanf("%s",str[i]);
    66             }
    67             int k=0;
    68             for(int i=0;i<N - 1;i++){
    69             for(int j=i+1;j<N;j++){
    70                 dt[k].s=i;
    71                 dt[k].e=j;
    72                 dt[k].dis=gd(str[i],str[j]);
    73                // printf("k==%d %d %d %d
     ",k,i,j,dt[k].dis);
    74                 k++;
    75             }
    76         }
    77         sort(dt, dt + k, cmp);
    78         //qsort(dt,k,sizeof(dt[0]),cmp);
    79         int f1,f2;
    80         for(int i=0;i<k;i++){
    81                 if(pre[dt[i].s]==-1)pre[dt[i].s]=dt[i].s;
    82                 if(pre[dt[i].e]==-1)pre[dt[i].e]=dt[i].e;
    83                 f1=find(dt[i].s);
    84                 f2=find(dt[i].e);
    85                 if(f1!=f2){
    86                     num++;
    87                     pre[f1]=f2;
    88                     anser+=dt[i].dis;
    89                 }
    90                 if(num==N)break;
    91             //merge(dt[i]);
    92         }
    93         printf("The highest possible quality is 1/%d.
    ",anser);
    94     }
    95     return 0;
    96 }

     prime代码:

     1 #include<stdio.h>
     2 #include<string.h>
     3 const int INF=0x3f3f3f3f;
     4 const int MAXN=2010;
     5 int map[MAXN][MAXN],low[MAXN];
     6 int vis[MAXN];
     7 int N,ans;
     8 char str[MAXN][10];
     9 void prime(){
    10     memset(vis,0,sizeof(vis));
    11     int temp,k,flot=1;
    12     vis[1]=1;
    13     for(int i=1;i<=N;i++)low[i]=map[1][i];
    14     for(int i=1;i<=N;i++){
    15         temp=INF;
    16         for(int j=1;j<=N;j++)
    17         if(!vis[j]&&temp>low[j])
    18                     temp=low[k=j];
    19             if(temp==INF){
    20                 printf("The highest possible quality is 1/%d.
    ",ans);
    21                 break;
    22             }
    23             ans+=temp;
    24             flot++;
    25             vis[k]=1;
    26             for(int j=1;j<=N;j++)
    27                     if(!vis[j]&&map[k][j]<low[j])
    28                                 low[j]=map[k][j];
    29     }
    30 }
    31 int fd(char *a,char *b){
    32     int t=0;
    33     for(int i=0;a[i];i++){
    34         if(a[i]!=b[i])t++;
    35     }
    36     return t;
    37 }
    38 void initial(){
    39     memset(map,INF,sizeof(map));
    40     ans=0;
    41 }
    42 int main(){int s;
    43     while(~scanf("%d",&N),N){
    44         initial();
    45         for(int i=1;i<=N;i++)scanf("%s",str[i]);
    46         for(int i=1;i<=N;i++){
    47             for(int j=i+1;j<=N;j++){
    48                 s=fd(str[i],str[j]);
    49                 if(s<map[i][j])map[i][j]=map[j][i]=s;
    50             }
    51         }
    52         prime();
    53     }
    54     return 0;
    55 }
  • 相关阅读:
    day7 面向对象 静态方法 类方法 属性方法 类的特殊成员方法 元类 反射 异常处理
    day6 面向对象 封装 继承 多态 类与实例在内存中的关系 经典类和新式类
    day5 time datetime random os sys shutil json pickle shelve xml configparser hashlib subprocess logging re正则 python计算器
    kafka常用操作命令
    linux基础
    django学习1——初识web应用程序
    mysql数据库(三)——pymysql模块
    mysql数据库(二)——表的查询
    mysql数据库(一)
    Python常用模块——re模块
  • 原文地址:https://www.cnblogs.com/handsomecui/p/4722389.html
Copyright © 2011-2022 走看看