zoukankan      html  css  js  c++  java
  • Fibonacci Tree(最小生成树,最大生成树)

    Fibonacci Tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3006    Accepted Submission(s): 966


    Problem Description
      Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
      Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
    (Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
     

     

    Input
      The first line of the input contains an integer T, the number of test cases.
      For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
      Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
     

     

    Output
      For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
     

     

    Sample Input
    2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
     

     

    Sample Output
    Case #1: Yes Case #2: No
     给了一个无向图..每个边要么是白的.要么是黑的..问能否构造一个生成树..让白边在生成树的个数为fibonacci数...
    题解:
    这个题就是求一遍最小的生成树,
    求一遍最大的生成树
    两个中间是不是有斐波那契数
    最后还有判一下联通;
    kruskal;
    代码:
      1 #include<stdio.h>
      2 #include<stdlib.h>
      3 #include<string.h>
      4 #include<algorithm>
      5 using namespace std;
      6 const int MAXN=100010;
      7 struct Node {
      8     int s,e,c;
      9 };
     10 Node dt[MAXN];
     11 int pre[MAXN];
     12 int M,t1,N;
     13 int cmp1(Node a,Node b){
     14     return a.c<b.c;
     15 }
     16 int cmp2(Node a,Node b){
     17     return a.c>b.c;
     18 }
     19 /*int cmp1(const void *a,const void *b){
     20     if((*(Node *)a).c<(*(Node *)b).c)return -1;
     21     else return 1;
     22 }
     23 int cmp2(const void *a,const void *b){
     24     if((*(Node *)a).c>(*(Node *)b).c)return -1;
     25     else return 1;
     26 }*/
     27 int find(int x){
     28     return pre[x]= x==pre[x]?x:find(pre[x]);
     29 }
     30 bool merge(Node a){
     31     if(!pre[a.s])pre[a.s]=a.s;
     32     if(!pre[a.e])pre[a.e]=a.e;
     33     int f1,f2;
     34     f1=find(a.s);f2=find(a.e);
     35     if(f1!=f2){
     36         pre[f1]=f2;
     37         t1++;
     38         if(a.c)return true;
     39     }
     40     return false;
     41 }
     42 int kruskal(){int tot=0;
     43         t1=1;
     44     for(int i=0;i<M;i++){
     45         if(merge(dt[i]))tot++;
     46     }
     47     if(t1==N)return tot;
     48     else return -1;
     49 }
     50 bool fp[MAXN];
     51 void gf(){
     52     int a,b,c=0;
     53     memset(fp,false,sizeof(fp));
     54     a=1;b=2;
     55     fp[a]=fp[b]=true;
     56     while(c<MAXN){
     57         c=a+b;
     58         fp[c]=true;
     59         a=b;
     60         b=c;
     61     }
     62 }
     63 int main(){
     64     int T,s1,s2,ans,flot=0;
     65     scanf("%d",&T);
     66     while(T--){
     67             flot++;
     68             memset(pre,0,sizeof(pre));
     69         scanf("%d%d",&N,&M);
     70         for(int i=0;i<M;i++){
     71             scanf("%d%d%d",&dt[i].s,&dt[i].e,&dt[i].c);
     72         }
     73        // qsort(dt,M,sizeof(dt[0]),cmp1);
     74        sort(dt,dt+M,cmp1);
     75         s1=kruskal();
     76         //qsort(dt,M,sizeof(dt[0]),cmp2);
     77         sort(dt,dt+M,cmp2);
     78         memset(pre,0,sizeof(pre));
     79         s2=kruskal();
     80         //printf("%d %d
    ",s1,s2);
     81         gf();
     82         ans=0;
     83         if(s1<0||s2<0){
     84             printf("Case #%d: No
    ",flot);
     85             continue;
     86         }
     87        //for(int i=0;i<100;i++)printf("fp[%d]=%d ",i,fp[i]);puts("");
     88         if(s1>s2){
     89             int q=s1;
     90             s1=s2;
     91             s2=q;
     92         }
     93         for(int i=s1;i<=s2;i++){
     94             if(fp[i])ans=1;
     95         }
     96         if(ans)printf("Case #%d: Yes
    ",flot);
     97         else printf("Case #%d: No
    ",flot);
     98     }
     99     return 0;
    100 }
  • 相关阅读:
    收集一些特殊的符号
    腾讯笔试有感
    Lazy Load, 延迟加载图片的 jQuery 插件
    腾讯实习生笔试题
    IE捉迷藏bug详解(躲猫猫)
    使用SQL Server 2000 全文检索
    一篇比较不错的关于masterpage的文章
    ASP.NET中对表单输入行有选择验证
    在WSS中高亮显示搜索结果
    WebPart安装位置对FrontPager的影响
  • 原文地址:https://www.cnblogs.com/handsomecui/p/4725600.html
Copyright © 2011-2022 走看看