zoukankan      html  css  js  c++  java
  • Fibonacci Tree(最小生成树,最大生成树)

    Fibonacci Tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3006    Accepted Submission(s): 966


    Problem Description
      Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
      Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
    (Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
     

     

    Input
      The first line of the input contains an integer T, the number of test cases.
      For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
      Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
     

     

    Output
      For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
     

     

    Sample Input
    2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
     

     

    Sample Output
    Case #1: Yes Case #2: No
     给了一个无向图..每个边要么是白的.要么是黑的..问能否构造一个生成树..让白边在生成树的个数为fibonacci数...
    题解:
    这个题就是求一遍最小的生成树,
    求一遍最大的生成树
    两个中间是不是有斐波那契数
    最后还有判一下联通;
    kruskal;
    代码:
      1 #include<stdio.h>
      2 #include<stdlib.h>
      3 #include<string.h>
      4 #include<algorithm>
      5 using namespace std;
      6 const int MAXN=100010;
      7 struct Node {
      8     int s,e,c;
      9 };
     10 Node dt[MAXN];
     11 int pre[MAXN];
     12 int M,t1,N;
     13 int cmp1(Node a,Node b){
     14     return a.c<b.c;
     15 }
     16 int cmp2(Node a,Node b){
     17     return a.c>b.c;
     18 }
     19 /*int cmp1(const void *a,const void *b){
     20     if((*(Node *)a).c<(*(Node *)b).c)return -1;
     21     else return 1;
     22 }
     23 int cmp2(const void *a,const void *b){
     24     if((*(Node *)a).c>(*(Node *)b).c)return -1;
     25     else return 1;
     26 }*/
     27 int find(int x){
     28     return pre[x]= x==pre[x]?x:find(pre[x]);
     29 }
     30 bool merge(Node a){
     31     if(!pre[a.s])pre[a.s]=a.s;
     32     if(!pre[a.e])pre[a.e]=a.e;
     33     int f1,f2;
     34     f1=find(a.s);f2=find(a.e);
     35     if(f1!=f2){
     36         pre[f1]=f2;
     37         t1++;
     38         if(a.c)return true;
     39     }
     40     return false;
     41 }
     42 int kruskal(){int tot=0;
     43         t1=1;
     44     for(int i=0;i<M;i++){
     45         if(merge(dt[i]))tot++;
     46     }
     47     if(t1==N)return tot;
     48     else return -1;
     49 }
     50 bool fp[MAXN];
     51 void gf(){
     52     int a,b,c=0;
     53     memset(fp,false,sizeof(fp));
     54     a=1;b=2;
     55     fp[a]=fp[b]=true;
     56     while(c<MAXN){
     57         c=a+b;
     58         fp[c]=true;
     59         a=b;
     60         b=c;
     61     }
     62 }
     63 int main(){
     64     int T,s1,s2,ans,flot=0;
     65     scanf("%d",&T);
     66     while(T--){
     67             flot++;
     68             memset(pre,0,sizeof(pre));
     69         scanf("%d%d",&N,&M);
     70         for(int i=0;i<M;i++){
     71             scanf("%d%d%d",&dt[i].s,&dt[i].e,&dt[i].c);
     72         }
     73        // qsort(dt,M,sizeof(dt[0]),cmp1);
     74        sort(dt,dt+M,cmp1);
     75         s1=kruskal();
     76         //qsort(dt,M,sizeof(dt[0]),cmp2);
     77         sort(dt,dt+M,cmp2);
     78         memset(pre,0,sizeof(pre));
     79         s2=kruskal();
     80         //printf("%d %d
    ",s1,s2);
     81         gf();
     82         ans=0;
     83         if(s1<0||s2<0){
     84             printf("Case #%d: No
    ",flot);
     85             continue;
     86         }
     87        //for(int i=0;i<100;i++)printf("fp[%d]=%d ",i,fp[i]);puts("");
     88         if(s1>s2){
     89             int q=s1;
     90             s1=s2;
     91             s2=q;
     92         }
     93         for(int i=s1;i<=s2;i++){
     94             if(fp[i])ans=1;
     95         }
     96         if(ans)printf("Case #%d: Yes
    ",flot);
     97         else printf("Case #%d: No
    ",flot);
     98     }
     99     return 0;
    100 }
  • 相关阅读:
    智慧光伏能源-园区光伏发电能源管控可视化
    无人值守,智能变电站可视化管控系统
    数字孪生,开启三维智慧园区管理新篇章
    智慧城市大数据运营中心 IOC 之 Web GIS 地图应用
    三维可视化数据中心机房监控管理系统
    打造绿色城市,数字孪生天然气站 3D 可视化
    绿色物流-智慧仓储监控管理 3D 可视化系统
    打造综合性智慧城市之朔州开发区 3D 可视化
    绿色城市之地下综合管廊3D可视化平台
    工业绿色环保发展:风力发电场管理监测可视化系统
  • 原文地址:https://www.cnblogs.com/handsomecui/p/4725600.html
Copyright © 2011-2022 走看看