zoukankan      html  css  js  c++  java
  • Ping pong(树状数组经典)

    Ping pong

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4874    Accepted Submission(s): 1777


    Problem Description
    N(3<=N<=20000) ping pong players live along a west-east street(consider the street as a line segment).

    Each player has a unique skill rank. To improve their skill rank, they often compete with each other. If two players want to compete, they must choose a referee among other ping pong players and hold the game in the referee's house. For some reason, the contestants can’t choose a referee whose skill rank is higher or lower than both of theirs.

    The contestants have to walk to the referee’s house, and because they are lazy, they want to make their total walking distance no more than the distance between their houses. Of course all players live in different houses and the position of their houses are all different. If the referee or any of the two contestants is different, we call two games different. Now is the problem: how many different games can be held in this ping pong street?
     
    Input
    The first line of the input contains an integer T(1<=T<=20), indicating the number of test cases, followed by T lines each of which describes a test case.


    Every test case consists of N + 1 integers. The first integer is N, the number of players. Then N distinct integers a1, a2 … aN follow, indicating the skill rank of each player, in the order of west to east. (1 <= ai <= 100000, i = 1 … N).
     
    Output
    For each test case, output a single line contains an integer, the total number of different games.
     
    Sample Input
    1 3 1 2 3
     
    Sample Output
    1
    题解:

    把运动员排成一排,对于其中任意一个位置i上的人来说,如果他作为裁判,则有这么两种可能:

    1.左边的某人能力值低于他,右边高于他;

    2.左边的某人能力值高于他,右边低于他。

    记左边比他小的人数为l[i],右边比他小的人数为r[i],

    那么左边比他大的人数为i-1-l[i],右边比他大的人数为n-i-r[i],

    则i作为裁判就有l[i]*(n-i-r[i])+(i-1-l[i])*r[i];

    前缀 后缀比i人大的数用树状数组求;

    那么代码为:

    要用long long ;

    代码:

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<iostream>
     5 #include<algorithm>
     6 //#define LOCAL
     7 using namespace std;
     8 const int INF=0x3f3f3f3f;
     9 const int MAXN=100010;
    10 int tree[MAXN+1],a[MAXN],bl[MAXN],br[MAXN];
    11 int lowbit(int x){
    12     return x&(-x);
    13 }
    14 void update(int x){
    15     while(x<=MAXN){
    16         tree[x]++;
    17         x+=lowbit(x);
    18     }
    19 }
    20 int SUM(int x){
    21     int temp=0;
    22     while(x){
    23         temp+=tree[x];
    24         x-=lowbit(x);
    25     }
    26     return temp;
    27 }
    28 int main(){
    29     #ifdef LOCAL
    30     freopen("data.in","r",stdin);
    31     freopen("data.out","w",stdout);
    32     #endif
    33     int T,N;
    34     scanf("%d",&T);
    35     while(T--){
    36         scanf("%d",&N);
    37         for(int i=1;i<=N;i++)scanf("%d",a+i);
    38         memset(tree,0,sizeof(tree));
    39         for(int i=1;i<=N;i++){
    40             bl[i]=SUM(a[i]);
    41             update(a[i]);
    42         }
    43         memset(tree,0,sizeof(tree));
    44         for(int i=N;i>0;i--){
    45             br[i]=SUM(a[i]);
    46             update(a[i]);
    47         }
    48         long long ans=0;
    49         for(int i=1;i<=N;i++){
    50             ans+=bl[i]*(N-i-br[i])+br[i]*(i-1-bl[i]);
    51         }
    52         printf("%lld
    ",ans);
    53     }
    54     return 0;
    55 }
  • 相关阅读:
    Js $.merge() 函数(合并两个数组内容到第一个数组)
    11.联结表---SQL
    函数作用域
    递归特性
    计算递归函数理解
    递归、问路函数
    全局变量用大写,局部变量用小写
    全局变量与局部变量
    函数形参和实参
    函数和过程
  • 原文地址:https://www.cnblogs.com/handsomecui/p/4895949.html
Copyright © 2011-2022 走看看