zoukankan      html  css  js  c++  java
  • Proving Equivalences(加多少边使其强联通)

    Proving Equivalences

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4384    Accepted Submission(s): 1556


    Problem Description
    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0.

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
     
    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
     
    Output
    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
     
    Sample Input
    2 4 0 3 2 1 2 1 3
     
    Sample Output
    4 2
     代码:
    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    #include<stack>
    #include<vector>
    using namespace std;
    #define mem(x,y) memset(x,y,sizeof(x))
    const int INF=0x3f3f3f3f;
    const double PI=acos(-1.0);
    const int MAXN=20010;
    int scc,dfs_blocks;
    int dfn[MAXN],low[MAXN],Instack[MAXN],in[MAXN],out[MAXN],sc[MAXN];
    stack<int>S;
    vector<int>vec[MAXN];
    void initial(){
        scc=0;dfs_blocks=0;
        mem(dfn,0);mem(low,0);mem(Instack,0);mem(in,0);mem(out,0);mem(sc,0);
        while(!S.empty())S.pop();
        for(int i=0;i<MAXN;i++)vec[i].clear();
    }
    void targin(int u,int fa){
        S.push(u);
        Instack[u]=1;
        dfn[u]=low[u]=++dfs_blocks;
        for(int i=0;i<vec[u].size();i++){
            int v=vec[u][i];
            if(!dfn[v]){
                targin(v,u);
                low[u]=min(low[u],low[v]);
            }
            else if(Instack[v]){
                low[u]=min(low[u],dfn[v]);
            }
        }
        if(low[u]==dfn[u]){
            scc++;
            while(1){
                int v=S.top();
                S.pop();
                Instack[v]=0;
                sc[v]=scc;
                if(u==v)break;
            }
        }
    }
    int main(){
        int T,m,n,x,y;
        scanf("%d",&T);
        while(T--){
            initial();
            scanf("%d%d",&n,&m);
            while(m--){
                scanf("%d%d",&x,&y);
                vec[x].push_back(y);
            }
            for(int i=1;i<=n;i++){
                if(!dfn[i])targin(i,-1);
            }
            for(int i=1;i<=n;i++){
                for(int j=0;j<vec[i].size();j++){
                    int v=vec[i][j];
                    if(sc[i]!=sc[v])in[sc[v]]++,out[sc[i]]++;
                }
            }
            int sumin=0,summa=0;
        //    printf("%d
    ",scc);
        if(scc==1){
            puts("0");continue;
        }
            for(int i=1;i<=scc;i++){
                if(in[i]==0)sumin++;
                if(out[i]==0)summa++;
                
            }
            printf("%d
    ",max(sumin,summa));
        }
        return 0;
    }
  • 相关阅读:
    521.最长特殊序列 I
    520.检查大写字母
    459.重复的子字符串
    Java 读取 .properties 文件的几种方式
    Idea 使用教程
    db2 with用法
    DB2 alter 新增/删除/修改列
    Bootstrap treegrid 实现树形表格结构
    Mysql 递归查询
    navicat for mysql 下载安装教程
  • 原文地址:https://www.cnblogs.com/handsomecui/p/4918879.html
Copyright © 2011-2022 走看看