How many integers can you find
Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6001 Accepted Submission(s): 1722
Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2 2 3
Sample Output
7
题解:题意就是找N-1中与M个数不互斥数的个数,由于4和6,12就可以除4和6,所以要找被选的数的最小公倍数;由于刚开始没考虑这点,直接找了24;注意M个数中可能有0;dfs+容斥,竟然运行时间还短点...
容斥代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
typedef long long LL;
vector<LL>p;
LL gcd(LL a,LL b){return b==0?a:gcd(b,a%b);}
void rc(LL x){
LL sum=0;
for(int i=1;i<(1<<p.size());i++){
LL num=0,cur=1;
for(int j=0;j<p.size();j++){
if(i&(1<<j)){
num++;
cur=cur*p[j]/gcd(cur,p[j]);
}
}//printf("%lld
",cur);
if(num&1)sum+=x/cur;
else sum-=x/cur;
}
printf("%lld
",sum);
}
int main(){
LL N,M;
LL x;
// printf("%lld
",(LL)pow(19,10));
while(~scanf("%lld%lld",&N,&M)){
p.clear();
for(int i=0;i<M;i++){
scanf("%lld",&x);
if(x==0)continue;
p.push_back(x);
}
rc(N-1);
}
return 0;
}
dfs+容斥:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
typedef long long LL;
LL m[15],ans;
LL N,M;
int k;
LL gcd(LL a,LL b){return b==0?a:gcd(b,a%b);}
void dfs(LL cur,LL pos,int t){
if(t==0){
if(k&1)ans+=N/cur;
else ans-=N/cur;
return;
}
if(pos>M)return;
dfs(cur*m[pos]/gcd(cur,m[pos]),pos+1,t-1);
dfs(cur,pos+1,t);
}
int main(){
LL x;
// printf("%lld
",(LL)pow(19,10));
while(~scanf("%lld%lld",&N,&M)){
N--;
for(int i=1;i<=M;i++){
scanf("%lld",&x);
if(x==0)continue;
m[i]=x;
}
ans=0;
for(k=1;k<=M;k++){
dfs(1,1,k);
}
printf("%lld
",ans);
}
return 0;
}