zoukankan      html  css  js  c++  java
  • Kyoya and Colored Balls(组合数)

    Kyoya and Colored Balls
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color i before drawing the last ball of color i + 1 for all i from 1 to k - 1. Now he wonders how many different ways this can happen.

    Input

    The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.

    Then, k lines will follow. The i-th line will contain ci, the number of balls of the i-th color (1 ≤ ci ≤ 1000).

    The total number of balls doesn't exceed 1000.

    Output

    A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.

    Examples
    input
    3 2 2 1
    output
    3
    input
    4 1 2 3 4
    output
    1680
    Note

    In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:

    1 2 1 2 3 1 1 2 2 3 2 1 1 2 3

    题意:
    有k种颜色,每种颜色对应a[i]个球,球的总数不超过1000
    要求第i种颜色的最后一个球,其后面接着的必须是第i+1种颜色的球
    问一共有多少种排法
    对于每一种颜色的求有当前所剩的总位数sum,当前颜色个数a
    C(sum - 1, a - 1);
    乘上所有的情况就好了;
    另外组合数要打表求出;
    C[i][j] = C[i - 1][j] + C[i - 1][j - 1];杨辉三角的求法;
    代码:
    #include<stdio.h>
    #include<string.h>
    #include<math.h>
    #include<algorithm>
    #include<iostream>
    #define LL __int64
    using namespace std;
    const int MAXN = 1010;
    const LL MOD = 1000000007;
    int a[MAXN];
    LL C[MAXN][MAXN];
    void db(){
        C[0][0] = 1;
        C[1][0] = 1; C[1][1] = 1;
        for(int i = 2; i < MAXN; i++){
            C[i][0] = C[i][i] = 1;
            for(int j = 1; j < i; j++){
                C[i][j] = C[i - 1][j] + C[i - 1][j - 1];
                C[i][j] %= MOD;
            }
        }
    }
    int main(){
        int k;
        db();
        while(~scanf("%d", &k)){
            LL sum = 0;
            for(int i = 1; i <= k; i++){
                scanf("%d", a + i);
                sum += a[i];
            }
            LL ans = 1;
            for(int i = k; i >= 1; i--){
                ans *= C[sum - 1][a[i] - 1];
                ans %= MOD;
            //    printf("%d %d %d
    ", sum - 1, a[i] - 1, C[sum - 1][a[i] - 1]);
                sum -= a[i];
            }
            printf("%I64d
    ", ans);
        }
        return 0;
    }
  • 相关阅读:
    blob 下载功能和预览功能
    实现大文件上传
    element ui框架之Upload
    常用utils
    vue实现excel表格上传解析与导出
    理解script加载
    js处理10万条数据
    Shadow DOM
    20150625_Andriod_01_ListView1_条目显示
    20150624_Andriod _web_service_匹配
  • 原文地址:https://www.cnblogs.com/handsomecui/p/5418738.html
Copyright © 2011-2022 走看看