zoukankan      html  css  js  c++  java
  • hadoop MapReduce 入门

    原创播客,如需转载请注明出处。原文地址:http://www.cnblogs.com/crawl/p/7687120.html 

    ----------------------------------------------------------------------------------------------------------------------------------------------------------

    笔记中提供了大量的代码示例,需要说明的是,大部分代码示例都是本人所敲代码并进行测试,不足之处,请大家指正~

    本博客中所有言论仅代表博主本人观点,若有疑惑或者需要本系列分享中的资料工具,敬请联系 qingqing_crawl@163.com

    -----------------------------------------------------------------------------------------------------------------------------------------------------------

     前言:这一个月实在是抽不出空来写博客了,最近在为学校开发网上办事大厅,平时还要上课,做任务,很忙,压力也很大,终于在本月的最后一天抽出了点时间。其实,这一篇播客一直在我的草稿箱中,LZ 本来想先仔细写一写 Hadoop 伪分布式的部署安装,然后介绍一些 HDFS 的内容再来介绍 MapReduce,是在是没有抽出空,今天就简单入门一下 MapReduce 吧。

    一、MapReduce 概述

    1.MapReduce 是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.

    2.MapReduce 由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算

    二、具体实现

    1.先来看一下 Eclipse 中此应用的包结构

    2.创建 map 的任务处理类:WCMapper

    复制代码
    /*
     * 1.Mapper 类的四个泛型中,前两个指定 mapper 输入数据的类型,后两个指定 mapper 输出数据的类型
     *   KEYIN 是输入的 key 的类型,VALUEIN 是输入的 value 的类型
     *   KEYOUT 是输出的 key 的类型,VALUEOUT 是输出的 value 的类型
     * 2.map 和 reduce 的数据的输入输出都是以 key-value 对的形式封装的
     * 3.默认情况下,框架传递给我们的 mapper 的输入数据中,key 是要处理的文本中一行的起始偏移量,为 Long 类型,
     * 这一行的内容为 value,为 String 类型的 
     * 4.后两个泛型的赋值需要我们结合实际情况
     * 5.为了在网络中传输时序列化更高效,Hadoop 把 Java 中的 Long 封装为 LongWritable, 把 String 封装为 Text
     */
    public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
        
        //重写 Mapper 中的 map 方法,MapReduce 框架每读一行数据就调用一次此方法
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
    //书写具体的业务逻辑,业务要处理的数据已经被框架传递进来,就是方法的参数中的 key 和 value //key 是这一行数据的起始偏移量,value 是这一行的文本内容 //1.将 Text 类型的一行的内容转为 String 类型 String line = value.toString(); //2.使用 StringUtils 以空格切分字符串,返回 String[] String[] words = StringUtils.split(line, " "); //3.循环遍历 String[],调用 context 的 writer()方法,输出为 key-value 对的形式 //key:单词 value:1 for(String word : words) { context.write(new Text(word), new LongWritable(1)); } } }
    复制代码

    2.创建 reduce 的任务处理类:WCReducer:

    复制代码
    /*
     * 1.Reducer 类的四个泛型中,前两个输入要与 Mapper 的输出相对应。输出需要联系具体情况自定义
     */
    public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
        
        //框架在 map 处理完之后,将所有的 kv 对缓存起来,进行分组,然后传递一个分组(<key,{values}>,例如:<"hello",{1,1,1,1}>),
        //调用此方法
        @Override
        protected void reduce(Text key, Iterable<LongWritable> values, Context context)throws IOException, InterruptedException {
            
            //1.定义一个计数器
            long count = 0;
            
            //2.遍历 values的 list,进行累加求和
            for(LongWritable value : values) {
                //使用 LongWritable 的 get() 方法,可以将 一个 LongWritable 类型转为 Long 类型
                count += value.get();
            }
            
            //3.输出这一个单词的统计结果
            context.write(key, new LongWritable(count));
        }
    
    }
    复制代码

    3.创建一个类,用来描述一个特定的作业:WCRunner,(此类了LZ没有按照规范的模式写)

    复制代码
    /**
     * 此类用来描述一个特定的作业
     * 例:1.该作业使用哪个类作为逻辑处理中的 map,哪个作为 reduce
     *       2.指定该作业要处理的数据所在的路径
     *       3.指定该作业输出的结果放到哪个路径
     */
    public class WCRunner {
        
        public static void main(String[] args) throws Exception {
            
            //1.获取 Job 对象:使用 Job 静态的 getInstance() 方法,传入 Configuration 对象
            Configuration conf = new Configuration();
            Job wcJob = Job.getInstance(conf);
            
            //2.设置整个 Job 所用的类的 jar 包:使用 Job 的 setJarByClass(),一般传入  当前类.class
            wcJob.setJarByClass(WCRunner.class);
            
            //3.设置本 Job 使用的 mapper 和 reducer 的类
            wcJob.setMapperClass(WCMapper.class);
            wcJob.setReducerClass(WCReducer.class);
            
            
            //4.指定 reducer 输出数据的 kv 类型  注:若 mapper 和 reducer 的输出数据的 kv 类型一致,可以用如下两行代码设置
            wcJob.setOutputKeyClass(Text.class);
            wcJob.setOutputValueClass(LongWritable.class);
            
            //5.指定 mapper 输出数据的 kv 类型
            wcJob.setMapOutputKeyClass(Text.class);
            wcJob.setMapOutputValueClass(LongWritable.class);
            
            //6.指定原始的输入数据存放路径:使用 FileInputFormat 的 setInputPaths() 方法
            FileInputFormat.setInputPaths(wcJob, new Path("/wc/srcdata/"));
            
            //7.指定处理结果的存放路径:使用 FileOutputFormat 的 setOutputFormat() 方法
            FileOutputFormat.setOutputPath(wcJob, new Path("/wc/output/"));
            
            //8.将 Job 提交给集群运行,参数为 true 表示显示运行状态
            wcJob.waitForCompletion(true);
            
        }
    
    }
    复制代码

    4.将此项目导出为 jar 文件

    步骤:右击项目 --->  Export ---> Java ---> JAR file --->指定导出路径(我指定的为:e:wc.jar) ---> Finish

    5.将导出的 jar 包上传到 linux 上

    LZ使用的方法是:在 SecureCRT 客户端中使用 Alt + p 快捷键打开上传文件的终端,输入 put e"wc.jar  即可上传

    6.创建初始测试文件:words.log

    命令: vi words.log    自己输入测试数据即可

    7.在 hdfs 中创建存放初始测试文件 words.log 的目录:我们在 WCRunner 中指定的是  /wc/srcdata/

    命令:

    [hadoop@crawl ~]$ hadoop fs -mkdir /wc
    [hadoop@crawl ~]$ hadoop fs -mkdir /wc/srcdata

    8.将初始测试文件 words.log 上传到 hdfs 的相应目录

    命令:[hadoop@crawl ~]$ hadoop fs -put words.log /wc/srcdata

    9.运行 jar 文件

    命令:hadoop jar wc.jar com.software.hadoop.mr.wordcount.WCRunner

    此命令为  hadoop jar wc.jar 加上 WCRunner类的全类名,程序的入口为 WCRunner 内的 main 方法,运行完此命令便可以看到输出日志信息:

    然后前去我们之前配置的存放输出结果的路径(LZ之前设置的为:/wc/output/)就可以看到 MapReduce 的执行结果了

    输入命令:hadoop fs -ls /wc/output/  查看以下 /wc/output/ 路径下的内容

    结果数据就在第二个文件中,输入命令:hadoop fs -cat /wc/output/part-r-00000   即可查看:

    至此我们的这个小应用就完成了,是不是很有意思的,LZ 在实现的时候还是发生了一点小意外:

    LZ 查阅资料发现这是由于 jdk 版本不一致导致的错误,统一 jdk 版本后便没有问题了。

     

  • 相关阅读:
    Sencha Touch 使用笔记
    区数据
    省市 数据
    js校验身份证
    js 邮政编码验证
    原生js添加class
    让IE6 IE7 IE8 IE9 IE10 IE11支持Bootstrap的解决方法
    js学习笔记 Function类型属性的理解
    js学习笔记 理解原型对象
    js学习笔记 chapter5 引用类型
  • 原文地址:https://www.cnblogs.com/hanjun0612/p/9779758.html
Copyright © 2011-2022 走看看