zoukankan      html  css  js  c++  java
  • 转载:DenseNet算法详解

    原文连接:http://blog.csdn.net/u014380165/article/details/75142664

    参考连接:http://blog.csdn.net/u012938704/article/details/53468483

     

    本文这里仅当学习笔记使用,具体细节建议前往原文细度。

    论文:Densely Connected Convolutional Networks 
    论文链接:https://arxiv.org/pdf/1608.06993.pdf 
    代码的github链接:https://github.com/liuzhuang13/DenseNet

    文章详解: 
    这篇文章是CVPR2017的best paper,文章提出的DenseNet(Dense Convolutional Network)主要还是和ResNet及Inception网络做对比,思想上有借鉴,但却是全新的结构,网络结构并不复杂,却非常有效!众所周知,最近一两年卷积神经网络提高效果的方向,要么深(比如ResNet,解决了网络深时候的梯度消失问题)要么宽(比如GoogleNet的Inception),而作者则是从feature入手,通过对feature的极致利用达到更好的效果和更少的参数。

    先列下DenseNet的几个优点,感受下它的强大: 
    1、减轻了vanishing-gradient(梯度消失)
    2、加强了feature的传递 
    3、更有效地利用了feature 
    4、一定程度上较少了参数数量

    在深度学习网络中,随着网络深度的加深,梯度消失问题会愈加明显,目前很多论文都针对这个问题提出了解决方案,比如ResNet,Highway Networks,Stochastic depth,FractalNets等,尽管这些算法的网络结构有差别,但是核心都在于:create short paths from early layers to later layers。那么作者是怎么做呢?延续这个思路,那就是在保证网络中层与层之间最大程度的信息传输的前提下,直接将所有层连接起来

    先放一个dense block的结构图。在传统的卷积神经网络中,如果你有L层,那么就会有L个连接,但是在DenseNet中,会有L(L+1)/2个连接。简单讲,就是每一层的输入来自前面所有层的输出。如下图:x0是input,H1的输入是x0(input),H2的输入是x0和x1(x1是H1的输出)……

    这里写图片描述

    DenseNet的一个优点是网络更窄,参数更少,很大一部分原因得益于这种dense block的设计,后面有提到在dense block中每个卷积层的输出feature map的数量都很小(小于100),而不是像其他网络一样动不动就几百上千的宽度。同时这种连接方式使得特征和梯度的传递更加有效,网络也就更加容易训练。原文的一句话非常喜欢:Each layer has direct access to the gradients from the loss function and the original input signal, leading to an implicit deep supervision.直接解释了为什么这个网络的效果会很好。前面提到过梯度消失问题在网络深度越深的时候越容易出现,原因就是输入信息和梯度信息在很多层之间传递导致的,而现在这种dense connection相当于每一层都直接连接input和loss,因此就可以减轻梯度消失现象,这样更深网络不是问题。另外作者还观察到这种dense connection有正则化的效果,因此对于过拟合有一定的抑制作用,博主认为是因为参数减少了(后面会介绍为什么参数会减少),所以过拟合现象减轻。

    这篇文章的一个优点就是基本上没有公式,不像灌水文章一样堆复杂公式把人看得一愣一愣的。文章中只有两个公式,是用来阐述DenseNet和ResNet的关系,对于从原理上理解这两个网络还是非常重要的。

    第一个公式是ResNet的。这里的l表示层,xl表示l层的输出,Hl表示一个非线性变换。所以对于ResNet而言,l层的输出是l-1层的输出加上对l-1层输出的非线性变换。

    这里写图片描述

    第二个公式是DenseNet的。[x0,x1,…,xl-1]表示将0到l-1层的输出feature map做concatenation。concatenation是做通道的合并,就像Inception那样。而前面resnet是做值的相加,通道数是不变的。Hl包括BN,ReLU和3*3的卷积。

    这里写图片描述这里Hl(.)是一个Composite function,是三个操作的组合Dense Block:BN>(Scale)->ReLU>Conv(3×3)->(Dropout)

    所以从这两个公式就能看出DenseNet和ResNet在本质上的区别,太精辟。

    前面的Figure 1表示的是dense block,而下面的Figure 2表示的则是一个DenseNet的结构图,在这个结构图中包含了3个dense block。作者将DenseNet分成多个dense block,原因是希望各个dense block内的feature map的size统一,这样在做concatenation就不会有size的问题。

    这里写图片描述

    这个Table1就是整个网络的结构图。这个表中的k=32,k=48中的k是growth rate,表示每个dense block中每层输出的feature map个数。为了避免网络变得很宽,作者都是采用较小的k,比如32这样,作者的实验也表明小的k可以有更好的效果。根据dense block的设计,后面几层可以得到前面所有层的输入,因此concat后的输入channel还是比较大的。另外这里每个dense block的3*3卷积前面都包含了一个1*1的卷积操作,就是所谓的bottleneck layer,目的是减少输入的feature map数量,既能降维减少计算量,又能融合各个通道的特征,何乐而不为。另外作者为了进一步压缩参数,在每两个dense block之间又增加了1*1的卷积操作。因此在后面的实验对比中,如果你看到DenseNet-C这个网络,每个dense block直接增加了这个Translation layer,该层的1*1卷积的输出channel默认是输入channel到一半, 具体:由BN>(Scale)->(Relu)->Conv(1×1)>(Dropout)->averagePooling(2×2)组成。如果你看到DenseNet-BC这个网络,表示既有bottleneck layer,又有Translation layer。

    这里写图片描述

    再详细说下bottleneck和transition layer操作在每个Dense Block中都包含很多个子结构,以DenseNet-169的Dense Block(3)为例,包含32个1*1和3*3的卷积操作,也就是第32个子结构的输入是前面31层的输出结果,每层输出的channel是32(growth rate),那么如果不做bottleneck操作,第32层的3*3卷积操作的输入就是31*32+(上一个Dense Block的输出channel),近1000了。而加上1*1的卷积,代码中的1*1卷积的channel是growth rate*4,也就是128,然后再作为3*3卷积的输入。这就大大减少了计算量,这就是bottleneck。至于transition layer,放在两个Dense Block中间,是因为每个Dense Block结束后的输出channel个数很多,需要用1*1的卷积核来降维。还是以DenseNet-169的Dense Block(3)为例,虽然第32层的3*3卷积输出channel只有32个(growth rate),但是紧接着还会像前面几层一样有通道的concat操作,即将第32层的输出和第32层的输入做concat,前面说过第32层的输入是1000左右的channel,所以最后每个Dense Block的输出也是1000多的channel。因此这个transition layer有个参数reduction(范围是0到1),表示将这些输出缩小到原来的多少倍,默认是0.5,这样传给下一个Dense Block的时候channel数量就会减少一半,这就是transition layer的作用。文中还用到dropout操作来随机减少分支,避免过拟合,毕竟这篇文章的连接确实多。

    实验结果: 
    作者在不同数据集上采用的DenseNet网络会有一点不一样,比如在Imagenet数据集上,DenseNet-BC有4个dense block,但是在别的数据集上只用3个dense block。其他更多细节可以看论文3部分的Implementation Details。训练的细节和超参数的设置可以看论文4.2部分,在ImageNet数据集上测试的时候有做224*224的center crop。

    Table2是在三个数据集(C10,C100,SVHN)上和其他算法的对比结果。ResNet[11]就是kaiming He的论文,对比结果一目了然。DenseNet-BC的网络参数和相同深度的DenseNet相比确实减少了很多!参数减少除了可以节省内存,还能减少过拟合。这里对于SVHN数据集,DenseNet-BC的结果并没有DenseNet(k=24)的效果好,作者认为原因主要是SVHN这个数据集相对简单,更深的模型容易过拟合。在表格的倒数第二个区域的三个不同深度L和k的DenseNet的对比可以看出随着L和k的增加,模型的效果是更好的。

    这里写图片描述

    Figure3是DenseNet-BC和ResNet在Imagenet数据集上的对比,左边那个图是参数复杂度和错误率的对比,你可以在相同错误率下看参数复杂度,也可以在相同参数复杂度下看错误率,提升还是很明显的!右边是flops(可以理解为计算复杂度)和错误率的对比,同样有效果。

    这里写图片描述

    Figure4也很重要。左边的图表示不同类型DenseNet的参数和error对比。中间的图表示DenseNet-BC和ResNet在参数和error的对比,相同error下,DenseNet-BC的参数复杂度要小很多。右边的图也是表达DenseNet-BC-100只需要很少的参数就能达到和ResNet-1001相同的结果。

    这里写图片描述

    另外提一下DenseNet和stochastic depth的关系,在stochastic depth中,residual中的layers在训练过程中会被随机drop掉,其实这就会使得相邻层之间直接连接,这和DenseNet是很像的。

    总结: 
    博主读完这篇文章真的有点相见恨晚的感觉,半年前就在arxiv上挂出来了,听说当时就引起了轰动,后来又被选为CVPR2017的oral,感觉要撼动ResNet的地位了,再加上现在很多分类检测的网络都是在ResNet上做的,这岂不是大地震了。惊讶之余来总结下这篇文章,该文章提出的DenseNet核心思想在于建立了不同层之间的连接关系,充分利用了feature,进一步减轻了梯度消失问题,加深网络不是问题,而且训练效果非常好。另外,利用bottleneck layer,Translation layer以及较小的growth rate使得网络变窄,参数减少,有效抑制了过拟合,同时计算量也减少了。DenseNet优点很多,而且在和ResNet的对比中优势还是非常明显的。

    最后给出网络结构:

    layer {
      name: "Data1"
      type: "Data"
      top: "Data1"
      top: "Data2"
      transform_param {
        mirror: true
        crop_size: 224
        mean_value: 83
        mean_value: 79
        mean_value: 80
        #mean_file: "./data/foodnet_mean.binaryproto"
      }
      data_param {
        source: "./data/densenettrain"
        #batch_size: 64
        batch_size: 1
        backend: LMDB
      }
    }
    layer {
      name: "Convolution1"
      type: "Convolution"
      bottom: "Data1"
      top: "Convolution1"
      convolution_param {
        num_output: 16
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "BatchNorm1"
      type: "BatchNorm"
      bottom: "Convolution1"
      top: "BatchNorm1"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale1"
      type: "Scale"
      bottom: "BatchNorm1"
      top: "BatchNorm1"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU1"
      type: "ReLU"
      bottom: "BatchNorm1"
      top: "BatchNorm1"
    }
    layer {
      name: "Convolution2"
      type: "Convolution"
      bottom: "BatchNorm1"
      top: "Convolution2"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout1"
      type: "Dropout"
      bottom: "Convolution2"
      top: "Dropout1"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat1"
      type: "Concat"
      bottom: "Convolution1"
      bottom: "Dropout1"
      top: "Concat1"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm2"
      type: "BatchNorm"
      bottom: "Concat1"
      top: "BatchNorm2"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale2"
      type: "Scale"
      bottom: "BatchNorm2"
      top: "BatchNorm2"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU2"
      type: "ReLU"
      bottom: "BatchNorm2"
      top: "BatchNorm2"
    }
    layer {
      name: "Convolution3"
      type: "Convolution"
      bottom: "BatchNorm2"
      top: "Convolution3"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout2"
      type: "Dropout"
      bottom: "Convolution3"
      top: "Dropout2"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat2"
      type: "Concat"
      bottom: "Concat1"
      bottom: "Dropout2"
      top: "Concat2"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm3"
      type: "BatchNorm"
      bottom: "Concat2"
      top: "BatchNorm3"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale3"
      type: "Scale"
      bottom: "BatchNorm3"
      top: "BatchNorm3"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU3"
      type: "ReLU"
      bottom: "BatchNorm3"
      top: "BatchNorm3"
    }
    layer {
      name: "Convolution4"
      type: "Convolution"
      bottom: "BatchNorm3"
      top: "Convolution4"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout3"
      type: "Dropout"
      bottom: "Convolution4"
      top: "Dropout3"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat3"
      type: "Concat"
      bottom: "Concat2"
      bottom: "Dropout3"
      top: "Concat3"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm4"
      type: "BatchNorm"
      bottom: "Concat3"
      top: "BatchNorm4"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale4"
      type: "Scale"
      bottom: "BatchNorm4"
      top: "BatchNorm4"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU4"
      type: "ReLU"
      bottom: "BatchNorm4"
      top: "BatchNorm4"
    }
    layer {
      name: "Convolution5"
      type: "Convolution"
      bottom: "BatchNorm4"
      top: "Convolution5"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout4"
      type: "Dropout"
      bottom: "Convolution5"
      top: "Dropout4"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat4"
      type: "Concat"
      bottom: "Concat3"
      bottom: "Dropout4"
      top: "Concat4"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm5"
      type: "BatchNorm"
      bottom: "Concat4"
      top: "BatchNorm5"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale5"
      type: "Scale"
      bottom: "BatchNorm5"
      top: "BatchNorm5"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU5"
      type: "ReLU"
      bottom: "BatchNorm5"
      top: "BatchNorm5"
    }
    layer {
      name: "Convolution6"
      type: "Convolution"
      bottom: "BatchNorm5"
      top: "Convolution6"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout5"
      type: "Dropout"
      bottom: "Convolution6"
      top: "Dropout5"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat5"
      type: "Concat"
      bottom: "Concat4"
      bottom: "Dropout5"
      top: "Concat5"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm6"
      type: "BatchNorm"
      bottom: "Concat5"
      top: "BatchNorm6"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale6"
      type: "Scale"
      bottom: "BatchNorm6"
      top: "BatchNorm6"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU6"
      type: "ReLU"
      bottom: "BatchNorm6"
      top: "BatchNorm6"
    }
    layer {
      name: "Convolution7"
      type: "Convolution"
      bottom: "BatchNorm6"
      top: "Convolution7"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout6"
      type: "Dropout"
      bottom: "Convolution7"
      top: "Dropout6"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat6"
      type: "Concat"
      bottom: "Concat5"
      bottom: "Dropout6"
      top: "Concat6"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm7"
      type: "BatchNorm"
      bottom: "Concat6"
      top: "BatchNorm7"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale7"
      type: "Scale"
      bottom: "BatchNorm7"
      top: "BatchNorm7"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU7"
      type: "ReLU"
      bottom: "BatchNorm7"
      top: "BatchNorm7"
    }
    layer {
      name: "Convolution8"
      type: "Convolution"
      bottom: "BatchNorm7"
      top: "Convolution8"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout7"
      type: "Dropout"
      bottom: "Convolution8"
      top: "Dropout7"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat7"
      type: "Concat"
      bottom: "Concat6"
      bottom: "Dropout7"
      top: "Concat7"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm8"
      type: "BatchNorm"
      bottom: "Concat7"
      top: "BatchNorm8"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale8"
      type: "Scale"
      bottom: "BatchNorm8"
      top: "BatchNorm8"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU8"
      type: "ReLU"
      bottom: "BatchNorm8"
      top: "BatchNorm8"
    }
    layer {
      name: "Convolution9"
      type: "Convolution"
      bottom: "BatchNorm8"
      top: "Convolution9"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout8"
      type: "Dropout"
      bottom: "Convolution9"
      top: "Dropout8"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat8"
      type: "Concat"
      bottom: "Concat7"
      bottom: "Dropout8"
      top: "Concat8"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm9"
      type: "BatchNorm"
      bottom: "Concat8"
      top: "BatchNorm9"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale9"
      type: "Scale"
      bottom: "BatchNorm9"
      top: "BatchNorm9"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU9"
      type: "ReLU"
      bottom: "BatchNorm9"
      top: "BatchNorm9"
    }
    layer {
      name: "Convolution10"
      type: "Convolution"
      bottom: "BatchNorm9"
      top: "Convolution10"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout9"
      type: "Dropout"
      bottom: "Convolution10"
      top: "Dropout9"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat9"
      type: "Concat"
      bottom: "Concat8"
      bottom: "Dropout9"
      top: "Concat9"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm10"
      type: "BatchNorm"
      bottom: "Concat9"
      top: "BatchNorm10"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale10"
      type: "Scale"
      bottom: "BatchNorm10"
      top: "BatchNorm10"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU10"
      type: "ReLU"
      bottom: "BatchNorm10"
      top: "BatchNorm10"
    }
    layer {
      name: "Convolution11"
      type: "Convolution"
      bottom: "BatchNorm10"
      top: "Convolution11"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout10"
      type: "Dropout"
      bottom: "Convolution11"
      top: "Dropout10"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat10"
      type: "Concat"
      bottom: "Concat9"
      bottom: "Dropout10"
      top: "Concat10"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm11"
      type: "BatchNorm"
      bottom: "Concat10"
      top: "BatchNorm11"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale11"
      type: "Scale"
      bottom: "BatchNorm11"
      top: "BatchNorm11"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU11"
      type: "ReLU"
      bottom: "BatchNorm11"
      top: "BatchNorm11"
    }
    layer {
      name: "Convolution12"
      type: "Convolution"
      bottom: "BatchNorm11"
      top: "Convolution12"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout11"
      type: "Dropout"
      bottom: "Convolution12"
      top: "Dropout11"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat11"
      type: "Concat"
      bottom: "Concat10"
      bottom: "Dropout11"
      top: "Concat11"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm12"
      type: "BatchNorm"
      bottom: "Concat11"
      top: "BatchNorm12"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale12"
      type: "Scale"
      bottom: "BatchNorm12"
      top: "BatchNorm12"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU12"
      type: "ReLU"
      bottom: "BatchNorm12"
      top: "BatchNorm12"
    }
    layer {
      name: "Convolution13"
      type: "Convolution"
      bottom: "BatchNorm12"
      top: "Convolution13"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout12"
      type: "Dropout"
      bottom: "Convolution13"
      top: "Dropout12"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat12"
      type: "Concat"
      bottom: "Concat11"
      bottom: "Dropout12"
      top: "Concat12"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm13"
      type: "BatchNorm"
      bottom: "Concat12"
      top: "BatchNorm13"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale13"
      type: "Scale"
      bottom: "BatchNorm13"
      top: "BatchNorm13"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU13"
      type: "ReLU"
      bottom: "BatchNorm13"
      top: "BatchNorm13"
    }
    layer {
      name: "Convolution14"
      type: "Convolution"
      bottom: "BatchNorm13"
      top: "Convolution14"
      convolution_param {
        num_output: 160
        bias_term: false
        pad: 0
        kernel_size: 1
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout13"
      type: "Dropout"
      bottom: "Convolution14"
      top: "Dropout13"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Pooling1"
      type: "Pooling"
      bottom: "Dropout13"
      top: "Pooling1"
      pooling_param {
        pool: AVE
        kernel_size: 2
        stride: 2
      }
    }
    layer {
      name: "BatchNorm14"
      type: "BatchNorm"
      bottom: "Pooling1"
      top: "BatchNorm14"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale14"
      type: "Scale"
      bottom: "BatchNorm14"
      top: "BatchNorm14"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU14"
      type: "ReLU"
      bottom: "BatchNorm14"
      top: "BatchNorm14"
    }
    layer {
      name: "Convolution15"
      type: "Convolution"
      bottom: "BatchNorm14"
      top: "Convolution15"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout14"
      type: "Dropout"
      bottom: "Convolution15"
      top: "Dropout14"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat13"
      type: "Concat"
      bottom: "Pooling1"
      bottom: "Dropout14"
      top: "Concat13"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm15"
      type: "BatchNorm"
      bottom: "Concat13"
      top: "BatchNorm15"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale15"
      type: "Scale"
      bottom: "BatchNorm15"
      top: "BatchNorm15"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU15"
      type: "ReLU"
      bottom: "BatchNorm15"
      top: "BatchNorm15"
    }
    layer {
      name: "Convolution16"
      type: "Convolution"
      bottom: "BatchNorm15"
      top: "Convolution16"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout15"
      type: "Dropout"
      bottom: "Convolution16"
      top: "Dropout15"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat14"
      type: "Concat"
      bottom: "Concat13"
      bottom: "Dropout15"
      top: "Concat14"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm16"
      type: "BatchNorm"
      bottom: "Concat14"
      top: "BatchNorm16"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale16"
      type: "Scale"
      bottom: "BatchNorm16"
      top: "BatchNorm16"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU16"
      type: "ReLU"
      bottom: "BatchNorm16"
      top: "BatchNorm16"
    }
    layer {
      name: "Convolution17"
      type: "Convolution"
      bottom: "BatchNorm16"
      top: "Convolution17"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout16"
      type: "Dropout"
      bottom: "Convolution17"
      top: "Dropout16"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat15"
      type: "Concat"
      bottom: "Concat14"
      bottom: "Dropout16"
      top: "Concat15"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm17"
      type: "BatchNorm"
      bottom: "Concat15"
      top: "BatchNorm17"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale17"
      type: "Scale"
      bottom: "BatchNorm17"
      top: "BatchNorm17"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU17"
      type: "ReLU"
      bottom: "BatchNorm17"
      top: "BatchNorm17"
    }
    layer {
      name: "Convolution18"
      type: "Convolution"
      bottom: "BatchNorm17"
      top: "Convolution18"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout17"
      type: "Dropout"
      bottom: "Convolution18"
      top: "Dropout17"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat16"
      type: "Concat"
      bottom: "Concat15"
      bottom: "Dropout17"
      top: "Concat16"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm18"
      type: "BatchNorm"
      bottom: "Concat16"
      top: "BatchNorm18"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale18"
      type: "Scale"
      bottom: "BatchNorm18"
      top: "BatchNorm18"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU18"
      type: "ReLU"
      bottom: "BatchNorm18"
      top: "BatchNorm18"
    }
    layer {
      name: "Convolution19"
      type: "Convolution"
      bottom: "BatchNorm18"
      top: "Convolution19"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout18"
      type: "Dropout"
      bottom: "Convolution19"
      top: "Dropout18"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat17"
      type: "Concat"
      bottom: "Concat16"
      bottom: "Dropout18"
      top: "Concat17"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm19"
      type: "BatchNorm"
      bottom: "Concat17"
      top: "BatchNorm19"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale19"
      type: "Scale"
      bottom: "BatchNorm19"
      top: "BatchNorm19"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU19"
      type: "ReLU"
      bottom: "BatchNorm19"
      top: "BatchNorm19"
    }
    layer {
      name: "Convolution20"
      type: "Convolution"
      bottom: "BatchNorm19"
      top: "Convolution20"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout19"
      type: "Dropout"
      bottom: "Convolution20"
      top: "Dropout19"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat18"
      type: "Concat"
      bottom: "Concat17"
      bottom: "Dropout19"
      top: "Concat18"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm20"
      type: "BatchNorm"
      bottom: "Concat18"
      top: "BatchNorm20"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale20"
      type: "Scale"
      bottom: "BatchNorm20"
      top: "BatchNorm20"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU20"
      type: "ReLU"
      bottom: "BatchNorm20"
      top: "BatchNorm20"
    }
    layer {
      name: "Convolution21"
      type: "Convolution"
      bottom: "BatchNorm20"
      top: "Convolution21"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout20"
      type: "Dropout"
      bottom: "Convolution21"
      top: "Dropout20"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat19"
      type: "Concat"
      bottom: "Concat18"
      bottom: "Dropout20"
      top: "Concat19"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm21"
      type: "BatchNorm"
      bottom: "Concat19"
      top: "BatchNorm21"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale21"
      type: "Scale"
      bottom: "BatchNorm21"
      top: "BatchNorm21"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU21"
      type: "ReLU"
      bottom: "BatchNorm21"
      top: "BatchNorm21"
    }
    layer {
      name: "Convolution22"
      type: "Convolution"
      bottom: "BatchNorm21"
      top: "Convolution22"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout21"
      type: "Dropout"
      bottom: "Convolution22"
      top: "Dropout21"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat20"
      type: "Concat"
      bottom: "Concat19"
      bottom: "Dropout21"
      top: "Concat20"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm22"
      type: "BatchNorm"
      bottom: "Concat20"
      top: "BatchNorm22"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale22"
      type: "Scale"
      bottom: "BatchNorm22"
      top: "BatchNorm22"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU22"
      type: "ReLU"
      bottom: "BatchNorm22"
      top: "BatchNorm22"
    }
    layer {
      name: "Convolution23"
      type: "Convolution"
      bottom: "BatchNorm22"
      top: "Convolution23"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout22"
      type: "Dropout"
      bottom: "Convolution23"
      top: "Dropout22"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat21"
      type: "Concat"
      bottom: "Concat20"
      bottom: "Dropout22"
      top: "Concat21"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm23"
      type: "BatchNorm"
      bottom: "Concat21"
      top: "BatchNorm23"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale23"
      type: "Scale"
      bottom: "BatchNorm23"
      top: "BatchNorm23"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU23"
      type: "ReLU"
      bottom: "BatchNorm23"
      top: "BatchNorm23"
    }
    layer {
      name: "Convolution24"
      type: "Convolution"
      bottom: "BatchNorm23"
      top: "Convolution24"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout23"
      type: "Dropout"
      bottom: "Convolution24"
      top: "Dropout23"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat22"
      type: "Concat"
      bottom: "Concat21"
      bottom: "Dropout23"
      top: "Concat22"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm24"
      type: "BatchNorm"
      bottom: "Concat22"
      top: "BatchNorm24"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale24"
      type: "Scale"
      bottom: "BatchNorm24"
      top: "BatchNorm24"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU24"
      type: "ReLU"
      bottom: "BatchNorm24"
      top: "BatchNorm24"
    }
    layer {
      name: "Convolution25"
      type: "Convolution"
      bottom: "BatchNorm24"
      top: "Convolution25"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout24"
      type: "Dropout"
      bottom: "Convolution25"
      top: "Dropout24"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat23"
      type: "Concat"
      bottom: "Concat22"
      bottom: "Dropout24"
      top: "Concat23"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm25"
      type: "BatchNorm"
      bottom: "Concat23"
      top: "BatchNorm25"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale25"
      type: "Scale"
      bottom: "BatchNorm25"
      top: "BatchNorm25"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU25"
      type: "ReLU"
      bottom: "BatchNorm25"
      top: "BatchNorm25"
    }
    layer {
      name: "Convolution26"
      type: "Convolution"
      bottom: "BatchNorm25"
      top: "Convolution26"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout25"
      type: "Dropout"
      bottom: "Convolution26"
      top: "Dropout25"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat24"
      type: "Concat"
      bottom: "Concat23"
      bottom: "Dropout25"
      top: "Concat24"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm26"
      type: "BatchNorm"
      bottom: "Concat24"
      top: "BatchNorm26"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale26"
      type: "Scale"
      bottom: "BatchNorm26"
      top: "BatchNorm26"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU26"
      type: "ReLU"
      bottom: "BatchNorm26"
      top: "BatchNorm26"
    }
    layer {
      name: "Convolution27"
      type: "Convolution"
      bottom: "BatchNorm26"
      top: "Convolution27"
      convolution_param {
        num_output: 304
        bias_term: false
        pad: 0
        kernel_size: 1
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout26"
      type: "Dropout"
      bottom: "Convolution27"
      top: "Dropout26"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Pooling2"
      type: "Pooling"
      bottom: "Dropout26"
      top: "Pooling2"
      pooling_param {
        pool: AVE
        kernel_size: 2
        stride: 2
      }
    }
    layer {
      name: "BatchNorm27"
      type: "BatchNorm"
      bottom: "Pooling2"
      top: "BatchNorm27"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale27"
      type: "Scale"
      bottom: "BatchNorm27"
      top: "BatchNorm27"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU27"
      type: "ReLU"
      bottom: "BatchNorm27"
      top: "BatchNorm27"
    }
    layer {
      name: "Convolution28"
      type: "Convolution"
      bottom: "BatchNorm27"
      top: "Convolution28"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout27"
      type: "Dropout"
      bottom: "Convolution28"
      top: "Dropout27"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat25"
      type: "Concat"
      bottom: "Pooling2"
      bottom: "Dropout27"
      top: "Concat25"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm28"
      type: "BatchNorm"
      bottom: "Concat25"
      top: "BatchNorm28"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale28"
      type: "Scale"
      bottom: "BatchNorm28"
      top: "BatchNorm28"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU28"
      type: "ReLU"
      bottom: "BatchNorm28"
      top: "BatchNorm28"
    }
    layer {
      name: "Convolution29"
      type: "Convolution"
      bottom: "BatchNorm28"
      top: "Convolution29"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout28"
      type: "Dropout"
      bottom: "Convolution29"
      top: "Dropout28"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat26"
      type: "Concat"
      bottom: "Concat25"
      bottom: "Dropout28"
      top: "Concat26"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm29"
      type: "BatchNorm"
      bottom: "Concat26"
      top: "BatchNorm29"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale29"
      type: "Scale"
      bottom: "BatchNorm29"
      top: "BatchNorm29"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU29"
      type: "ReLU"
      bottom: "BatchNorm29"
      top: "BatchNorm29"
    }
    layer {
      name: "Convolution30"
      type: "Convolution"
      bottom: "BatchNorm29"
      top: "Convolution30"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout29"
      type: "Dropout"
      bottom: "Convolution30"
      top: "Dropout29"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat27"
      type: "Concat"
      bottom: "Concat26"
      bottom: "Dropout29"
      top: "Concat27"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm30"
      type: "BatchNorm"
      bottom: "Concat27"
      top: "BatchNorm30"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale30"
      type: "Scale"
      bottom: "BatchNorm30"
      top: "BatchNorm30"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU30"
      type: "ReLU"
      bottom: "BatchNorm30"
      top: "BatchNorm30"
    }
    layer {
      name: "Convolution31"
      type: "Convolution"
      bottom: "BatchNorm30"
      top: "Convolution31"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout30"
      type: "Dropout"
      bottom: "Convolution31"
      top: "Dropout30"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat28"
      type: "Concat"
      bottom: "Concat27"
      bottom: "Dropout30"
      top: "Concat28"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm31"
      type: "BatchNorm"
      bottom: "Concat28"
      top: "BatchNorm31"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale31"
      type: "Scale"
      bottom: "BatchNorm31"
      top: "BatchNorm31"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU31"
      type: "ReLU"
      bottom: "BatchNorm31"
      top: "BatchNorm31"
    }
    layer {
      name: "Convolution32"
      type: "Convolution"
      bottom: "BatchNorm31"
      top: "Convolution32"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout31"
      type: "Dropout"
      bottom: "Convolution32"
      top: "Dropout31"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat29"
      type: "Concat"
      bottom: "Concat28"
      bottom: "Dropout31"
      top: "Concat29"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm32"
      type: "BatchNorm"
      bottom: "Concat29"
      top: "BatchNorm32"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale32"
      type: "Scale"
      bottom: "BatchNorm32"
      top: "BatchNorm32"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU32"
      type: "ReLU"
      bottom: "BatchNorm32"
      top: "BatchNorm32"
    }
    layer {
      name: "Convolution33"
      type: "Convolution"
      bottom: "BatchNorm32"
      top: "Convolution33"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout32"
      type: "Dropout"
      bottom: "Convolution33"
      top: "Dropout32"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat30"
      type: "Concat"
      bottom: "Concat29"
      bottom: "Dropout32"
      top: "Concat30"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm33"
      type: "BatchNorm"
      bottom: "Concat30"
      top: "BatchNorm33"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale33"
      type: "Scale"
      bottom: "BatchNorm33"
      top: "BatchNorm33"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU33"
      type: "ReLU"
      bottom: "BatchNorm33"
      top: "BatchNorm33"
    }
    layer {
      name: "Convolution34"
      type: "Convolution"
      bottom: "BatchNorm33"
      top: "Convolution34"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout33"
      type: "Dropout"
      bottom: "Convolution34"
      top: "Dropout33"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat31"
      type: "Concat"
      bottom: "Concat30"
      bottom: "Dropout33"
      top: "Concat31"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm34"
      type: "BatchNorm"
      bottom: "Concat31"
      top: "BatchNorm34"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale34"
      type: "Scale"
      bottom: "BatchNorm34"
      top: "BatchNorm34"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU34"
      type: "ReLU"
      bottom: "BatchNorm34"
      top: "BatchNorm34"
    }
    layer {
      name: "Convolution35"
      type: "Convolution"
      bottom: "BatchNorm34"
      top: "Convolution35"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout34"
      type: "Dropout"
      bottom: "Convolution35"
      top: "Dropout34"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat32"
      type: "Concat"
      bottom: "Concat31"
      bottom: "Dropout34"
      top: "Concat32"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm35"
      type: "BatchNorm"
      bottom: "Concat32"
      top: "BatchNorm35"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale35"
      type: "Scale"
      bottom: "BatchNorm35"
      top: "BatchNorm35"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU35"
      type: "ReLU"
      bottom: "BatchNorm35"
      top: "BatchNorm35"
    }
    layer {
      name: "Convolution36"
      type: "Convolution"
      bottom: "BatchNorm35"
      top: "Convolution36"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout35"
      type: "Dropout"
      bottom: "Convolution36"
      top: "Dropout35"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat33"
      type: "Concat"
      bottom: "Concat32"
      bottom: "Dropout35"
      top: "Concat33"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm36"
      type: "BatchNorm"
      bottom: "Concat33"
      top: "BatchNorm36"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale36"
      type: "Scale"
      bottom: "BatchNorm36"
      top: "BatchNorm36"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU36"
      type: "ReLU"
      bottom: "BatchNorm36"
      top: "BatchNorm36"
    }
    layer {
      name: "Convolution37"
      type: "Convolution"
      bottom: "BatchNorm36"
      top: "Convolution37"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout36"
      type: "Dropout"
      bottom: "Convolution37"
      top: "Dropout36"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat34"
      type: "Concat"
      bottom: "Concat33"
      bottom: "Dropout36"
      top: "Concat34"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm37"
      type: "BatchNorm"
      bottom: "Concat34"
      top: "BatchNorm37"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale37"
      type: "Scale"
      bottom: "BatchNorm37"
      top: "BatchNorm37"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU37"
      type: "ReLU"
      bottom: "BatchNorm37"
      top: "BatchNorm37"
    }
    layer {
      name: "Convolution38"
      type: "Convolution"
      bottom: "BatchNorm37"
      top: "Convolution38"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout37"
      type: "Dropout"
      bottom: "Convolution38"
      top: "Dropout37"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat35"
      type: "Concat"
      bottom: "Concat34"
      bottom: "Dropout37"
      top: "Concat35"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm38"
      type: "BatchNorm"
      bottom: "Concat35"
      top: "BatchNorm38"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale38"
      type: "Scale"
      bottom: "BatchNorm38"
      top: "BatchNorm38"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU38"
      type: "ReLU"
      bottom: "BatchNorm38"
      top: "BatchNorm38"
    }
    layer {
      name: "Convolution39"
      type: "Convolution"
      bottom: "BatchNorm38"
      top: "Convolution39"
      convolution_param {
        num_output: 12
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "Dropout38"
      type: "Dropout"
      bottom: "Convolution39"
      top: "Dropout38"
      dropout_param {
        dropout_ratio: 0.2
      }
    }
    layer {
      name: "Concat36"
      type: "Concat"
      bottom: "Concat35"
      bottom: "Dropout38"
      top: "Concat36"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "BatchNorm39"
      type: "BatchNorm"
      bottom: "Concat36"
      top: "BatchNorm39"
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
      param {
        lr_mult: 0
        decay_mult: 0
      }
    }
    layer {
      name: "Scale39"
      type: "Scale"
      bottom: "BatchNorm39"
      top: "BatchNorm39"
      scale_param {
        filler {
          value: 1
        }
        bias_term: true
        bias_filler {
          value: 0
        }
      }
    }
    layer {
      name: "ReLU39"
      type: "ReLU"
      bottom: "BatchNorm39"
      top: "BatchNorm39"
    }
    layer {
      name: "Pooling3"
      type: "Pooling"
      bottom: "BatchNorm39"
      top: "Pooling3"
      pooling_param {
        pool: AVE
        global_pooling: true
      }
    }
    layer {
      name: "InnerProduct1"
      type: "InnerProduct"
      bottom: "Pooling3"
      top: "InnerProduct1"
      inner_product_param {
        num_output: 1000
        bias_term: true
        weight_filler {
          type: "xavier"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "SoftmaxWithLoss1"
      type: "SoftmaxWithLoss"
      bottom: "InnerProduct1"
      bottom: "Data2"
      top: "SoftmaxWithLoss1"
    }
    layer {
      name: "Accuracy1"
      type: "Accuracy"
      bottom: "InnerProduct1"
      bottom: "Data2"
      top: "Accuracy1"
    }
  • 相关阅读:
    __doPostBack的使用
    【转】function,new,constructor and prototye
    谈谈一些网页游戏失败的原因到底有哪些?(转)
    全面剖析页游巨头发家史(转)
    2013.02.20开通博客
    老子喜欢的女人
    如何成为强大的程序员?(转)
    注重健康
    学习方法总结
    数据库知识点滴积累
  • 原文地址:https://www.cnblogs.com/hansjorn/p/7562447.html
Copyright © 2011-2022 走看看