zoukankan      html  css  js  c++  java
  • 算法(6) —— AVL树

    AVL树二叉查找树的一种,所以其操作和二叉查找树的很多操作是相同的。

    1. 

     1 #ifndef AVLTREE_H
     2 #define AVLTREE_H
     3 
     4 struct AvlNode;
     5 typedef struct AvlNode *Position;
     6 typedef struct AvlNode *AvlTree;
     7 
     8 typedef int ElementType;
     9 
    10 
    11 AvlTree MakeEmpty( AvlTree T );
    12 Position Find( ElementType X, AvlTree T );
    13 Position FindMin( AvlTree T );
    14 Position FindMax( AvlTree T );
    15 AvlTree Insert( ElementType X, AvlTree T );
    16 AvlTree Delete( ElementType X, AvlTree T );
    17 ElementType Retrieve( Position P );
    18 
    19 #endif 
    avltree.h

    2.

      1 #include "avltree.h"
      2 #include <stdlib.h>
      3 #include "fatal.h"
      4 
      5 struct AvlNode  {
      6     ElementType Element;
      7     AvlTree  Left;
      8     AvlTree  Right;
      9     int      Height;
     10 };
     11 
     12 AvlTree  MakeEmpty( AvlTree T )   {
     13     if( T != NULL )
     14     {
     15         MakeEmpty( T->Left );
     16         MakeEmpty( T->Right );
     17         free( T );
     18     }
     19     return NULL;
     20 }
     21 
     22 Position  Find( ElementType X, AvlTree T )  {
     23     if( T == NULL )
     24         return NULL;
     25     if( X < T->Element )
     26         return Find( X, T->Left );
     27     else if( X > T->Element )
     28         return Find( X, T->Right );
     29     else
     30         return T;
     31 }
     32 
     33 Position  FindMin( AvlTree T )  {
     34     if( T == NULL )
     35         return NULL;
     36     else if( T->Left == NULL )
     37         return T;
     38     else return FindMin( T->Left );
     39 }
     40 
     41 Position  FindMax( AvlTree T )  {
     42     if( T != NULL )
     43         while( T->Right != NULL )
     44             T = T->Right;
     45 
     46     return T;
     47 }
     48 
     49 /* START: fig4_36.txt */
     50 static int  Height( Position P )  {
     51     if( P == NULL )
     52         return -1;
     53     else
     54         return P->Height;
     55 }
     56 /* END */
     57 
     58 static int  Max( int Lhs, int Rhs )  {
     59     return Lhs > Rhs ? Lhs : Rhs;
     60 }
     61 
     62 /* START: fig4_39.txt */
     63 /* This function can be called only if K2 has a left child K1 */
     64 /* Perform a rotate between a node (K2) and its left child */
     65 /* Update heights, then return new root k1*/
     66 
     67 static Position
     68 SingleRotateWithLeft( Position K2 )  {
     69     Position K1;
     70 
     71     K1 = K2->Left;
     72     K2->Left = K1->Right;
     73     K1->Right = K2;
     74 
     75     K2->Height = Max( Height( K2->Left ), Height( K2->Right ) ) + 1;
     76     K1->Height = Max( Height( K1->Left ), K2->Height ) + 1;
     77 
     78     return K1;  /* New root */
     79 }
     80 /* END */
     81 
     82 /* This function can be called only if K1 has a right child */
     83 /* Perform a rotate between a node (K1) and its right child */
     84 /* Update heights, then return new root */
     85 
     86 static Position  SingleRotateWithRight( Position K1 )  {
     87     Position K2;
     88 
     89     K2 = K1->Right;
     90     K1->Right = K2->Left;
     91     K2->Left = K1;
     92 
     93     K1->Height = Max( Height( K1->Left ), Height( K1->Right ) ) + 1;
     94     K2->Height = Max( Height( K2->Right ), K1->Height ) + 1;
     95 
     96     return K2;  /* New root */
     97 }
     98 
     99 /* START: fig4_41.txt */
    100 /* This function can be called only if K3 has a left */
    101 /* child and K3's left child has a right child */
    102 /* Do the left-right double rotation */
    103 /* Update heights, then return new root */
    104 
    105 static Position  DoubleRotateWithLeft( Position K3 )   {
    106     /* Rotate between K1 and K2 */
    107     K3->Left = SingleRotateWithRight( K3->Left );
    108 
    109     /* Rotate between K3 and K2 */
    110     return SingleRotateWithLeft( K3 );
    111 }
    112 /* END */
    113 
    114 /* This function can be called only if K1 has a right */
    115 /* child and K1's right child has a left child */
    116 /* Do the right-left double rotation */
    117 /* Update heights, then return new root */
    118 
    119 static Position  DoubleRotateWithRight( Position K1 )    {
    120     /* Rotate between K3 and K2 */
    121     K1->Right = SingleRotateWithLeft( K1->Right );
    122 
    123     /* Rotate between K1 and K2 */
    124     return SingleRotateWithRight( K1 );
    125 }
    126 
    127 
    128 AvlTree  Insert( ElementType X, AvlTree T )  {
    129     if( T == NULL )  {
    130         T = malloc( sizeof( struct AvlNode ) );
    131         if( T == NULL )
    132             FatalError( "Out of space!!!" );
    133         else     {
    134             T->Element = X; T->Height = 0;
    135             T->Left = T->Right = NULL;
    136         }
    137     }
    138     else  if(X < T->Element )  {
    139         T->Left = Insert( X, T->Left );
    140         if( Height( T->Left ) - Height( T->Right ) == 2 )
    141             if( X < T->Left->Element )
    142                 T = SingleRotateWithLeft( T );
    143             else
    144                 T = DoubleRotateWithLeft( T );
    145     }
    146     else  if( X > T->Element )    {
    147         T->Right = Insert( X, T->Right );
    148         if( Height( T->Right ) - Height( T->Left ) == 2 )
    149             if( X > T->Right->Element )
    150                 T = SingleRotateWithRight( T );
    151             else
    152                 T = DoubleRotateWithRight( T );
    153     }
    154     T->Height = Max( Height( T->Left ), Height( T->Right ) ) + 1;
    155     return T;
    156 }
    157 
    158 AvlTree    Delete( ElementType X, AvlTree T )  {
    159     printf( "Sorry; Delete is unimplemented; %d remains
    ", X );
    160     return T;
    161 }
    162 
    163 ElementType Retrieve( Position P )  {
    164     return P->Element;
    165 }
    avltree.c

    3.

     1 #include "avltree.c"
     2 #include <stdio.h>
     3 
     4 void PrintTree( AvlTree T)  {
     5     if (T != NULL) {
     6         PrintTree (T -> Left);
     7     printf    ("%d
    ",Retrieve (T));
     8         PrintTree (T -> Right);
     9     }
    10 }
    11 
    12 
    13 int main(int argc, char *argv[])  {
    14     AvlTree T;
    15     Position P;
    16     int i;
    17     int j = 0;
    18 
    19     T = MakeEmpty( NULL );
    20     for( i = 0; i < 50; i += 5 )
    21         T = Insert( i, T );
    22     /*for( i = 0; i < 50; i++ )*/
    23         /*if( ( P = Find( i, T ) ) == NULL || Retrieve( P ) != i )*/
    24            /*printf( "Error at %d
    ", i );*/
    25 
    26  /* for( i = 0; i < 50; i += 2 )
    27         T = Delete( i, T );
    28 
    29     for( i = 1; i < 50; i += 2 )
    30         if( ( P = Find( i, T ) ) == NULL || Retrieve( P ) != i )
    31             printf( "Error at %d
    ", i );
    32     for( i = 0; i < 50; i += 2 )
    33         if( ( P = Find( i, T ) ) != NULL )
    34             printf( "Error at %d
    ", i );
    35 */
    36         PrintTree (T);
    37 
    38     printf( "Min is %d, Max is %d
    ", Retrieve( FindMin( T ) ),
    39                Retrieve( FindMax( T ) ) );
    40 
    41     return 0;
    42 }
    testavl.c
  • 相关阅读:
    中芯国际唐镇生活园区二期奠基 助力员工安居乐业
    权限管理架构
    不登录电脑启动程序
    Nagios 系统监控
    JieBaNet+Lucene.Net
    FontAwesome 图标
    Net多线程编程
    Scala Control Structures
    OAuthLogin2.0
    Telnet服务器和客户端请求处理
  • 原文地址:https://www.cnblogs.com/hanxinle/p/7486134.html
Copyright © 2011-2022 走看看