zoukankan      html  css  js  c++  java
  • Lining Up

    问题 H: Lining Up

    时间限制: 1 Sec  内存限制: 128 MB
    提交: 45  解决: 30
    [提交][状态][讨论版][命题人:admin]

    题目描述

    There are N people, conveniently numbered 1 through N. They were standing in a row yesterday, but now they are unsure of the order in which they were standing. However, each person remembered the following fact: the absolute difference of the number of the people who were standing to the left of that person, and the number of the people who were standing to the right of that person. According to their reports, the difference above for person i is Ai.
    Based on these reports, find the number of the possible orders in which they were standing. Since it can be extremely large, print the answer modulo 109+7. Note that the reports may be incorrect and thus there may be no consistent order. In such a case, print 0.

    Constraints
    1≤N≤105
    0≤Ai≤N−1

    输入

    The input is given from Standard Input in the following format:
    N
    A1 A2 … AN

    输出

    Print the number of the possible orders in which they were standing, modulo 109+7.

    样例输入

    5
    2 4 4 0 2
    

    样例输出

    4
    

    提示

    There are four possible orders, as follows:
    ·2,1,4,5,3
    ·2,5,4,1,3
    ·3,1,4,5,2
    ·3,5,4,1,2

    #include <iostream>
    #include <cstdio>
    
    using namespace std;
    
    int a[100005]= {0};
    int n;
    int pd1()
    {
        for(int i=1; i<=n-1; i+=2)
        {
            if(a[i]!=2)
            {
                return 0;
            }
        }
        return 1;
    }
    int pd2()
    {
        if(a[0]!=1)
            return 0;
        int t = n/2;
        for(int i=1; i<=t; i++)
        {
            if(a[i*2]!=2)
            {
                return 0;
            }
        }
        return 1;
    }
    int main()
    {
    
        scanf("%d",&n);
        for(int i=0; i<n; i++)
        {
            int x;
            scanf("%d",&x);
            a[x]++;
        }
        if(n%2==0)
        {
            int flag = pd1();
            if(flag==0)
                printf("0");
    
            else
            {
                long long int t = 1;
                int p = n/2;
                for(int i=0; i<p; i++)
                {
                    t*=2;
                    t%=1000000007;
                }
                printf("%lld",t);
            }
        }
        else
        {
            int flag = pd2();
            if(flag==0)
                printf("0");
            else
            {
                long long int t = 1;
                int p = n/2;
                for(int i=0; i<p; i++)
                {
                    t*=2;
                    t%=1000000007;
                }
                printf("%lld",t);
            }
        }
    }

    规律题 奇数偶数分情况讨论

    样例

    7
    6 4 0 2 4 0 2   输出:0;

    8
    7 5 1 1 7 3 5 3    输出:16;

  • 相关阅读:
    css3 font-face
    快速理解RequireJs
    移动HTML5前端性能优化指南
    HTML中head头结构
    JS面向对象基础讲解(工厂模式、构造函数模式、原型模式、混合模式、动态原型模)
    巧妙使用CSS媒体查询(Media Queries)和JavaScript判断浏览器设备类型的好方法
    关于浏览器内核与javascript引擎的一些小知识
    SVG 与 Canvas:如何选择
    NodeJS、NPM安装配置步骤(windows版本)
    ie10 css hack 条件注释等兼容方式整理
  • 原文地址:https://www.cnblogs.com/hao-tian/p/9119236.html
Copyright © 2011-2022 走看看