zoukankan      html  css  js  c++  java
  • Lining Up

    问题 H: Lining Up

    时间限制: 1 Sec  内存限制: 128 MB
    提交: 45  解决: 30
    [提交][状态][讨论版][命题人:admin]

    题目描述

    There are N people, conveniently numbered 1 through N. They were standing in a row yesterday, but now they are unsure of the order in which they were standing. However, each person remembered the following fact: the absolute difference of the number of the people who were standing to the left of that person, and the number of the people who were standing to the right of that person. According to their reports, the difference above for person i is Ai.
    Based on these reports, find the number of the possible orders in which they were standing. Since it can be extremely large, print the answer modulo 109+7. Note that the reports may be incorrect and thus there may be no consistent order. In such a case, print 0.

    Constraints
    1≤N≤105
    0≤Ai≤N−1

    输入

    The input is given from Standard Input in the following format:
    N
    A1 A2 … AN

    输出

    Print the number of the possible orders in which they were standing, modulo 109+7.

    样例输入

    5
    2 4 4 0 2
    

    样例输出

    4
    

    提示

    There are four possible orders, as follows:
    ·2,1,4,5,3
    ·2,5,4,1,3
    ·3,1,4,5,2
    ·3,5,4,1,2

    #include <iostream>
    #include <cstdio>
    
    using namespace std;
    
    int a[100005]= {0};
    int n;
    int pd1()
    {
        for(int i=1; i<=n-1; i+=2)
        {
            if(a[i]!=2)
            {
                return 0;
            }
        }
        return 1;
    }
    int pd2()
    {
        if(a[0]!=1)
            return 0;
        int t = n/2;
        for(int i=1; i<=t; i++)
        {
            if(a[i*2]!=2)
            {
                return 0;
            }
        }
        return 1;
    }
    int main()
    {
    
        scanf("%d",&n);
        for(int i=0; i<n; i++)
        {
            int x;
            scanf("%d",&x);
            a[x]++;
        }
        if(n%2==0)
        {
            int flag = pd1();
            if(flag==0)
                printf("0");
    
            else
            {
                long long int t = 1;
                int p = n/2;
                for(int i=0; i<p; i++)
                {
                    t*=2;
                    t%=1000000007;
                }
                printf("%lld",t);
            }
        }
        else
        {
            int flag = pd2();
            if(flag==0)
                printf("0");
            else
            {
                long long int t = 1;
                int p = n/2;
                for(int i=0; i<p; i++)
                {
                    t*=2;
                    t%=1000000007;
                }
                printf("%lld",t);
            }
        }
    }

    规律题 奇数偶数分情况讨论

    样例

    7
    6 4 0 2 4 0 2   输出:0;

    8
    7 5 1 1 7 3 5 3    输出:16;

  • 相关阅读:
    c++开发之对应Linux下的sem_t和lock
    嵌入式开发之davinci--- 8148/8168/8127 中的图像处理算法优化库vlib
    crc32 冗余加密校验
    快速安装 GitLab 并汉化
    oracle-6-密码文件
    oracle-5-的升级步骤
    Linux大文件已删除,但df查看已使用的空间并未减少解决
    cygwin 的不同文件类型显示不同的颜色
    PLSQL的安装
    网络流量监控工具----iftop
  • 原文地址:https://www.cnblogs.com/hao-tian/p/9119236.html
Copyright © 2011-2022 走看看