Description
In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query (L, R) (L<=R), we report the minimum value among A[L], A[L+1], …, A[R]. Note that the indices start from 1, i.e. the left-most element is A[1].
In this problem, the array A is no longer static: we need to support another operation shift(i1, i2, i3, …, ik) (i1<i2<...<ik, k>1): we do a left “circular shift” of A[i1], A[i2], …, A[ik].
For example, if A={6, 2, 4, 8, 5, 1, 4}, then shift(2, 4, 5, 7) yields {6, 8, 4, 5, 4, 1, 2}. After that, shift(1,2) yields{8, 6, 4, 5, 4, 1, 2}.
In this problem, the array A is no longer static: we need to support another operation shift(i1, i2, i3, …, ik) (i1<i2<...<ik, k>1): we do a left “circular shift” of A[i1], A[i2], …, A[ik].
For example, if A={6, 2, 4, 8, 5, 1, 4}, then shift(2, 4, 5, 7) yields {6, 8, 4, 5, 4, 1, 2}. After that, shift(1,2) yields{8, 6, 4, 5, 4, 1, 2}.
Input
There will be only one test case, beginning with two integers n, q (1<=n<=100,000, 1<=q<=120,000), the number of integers in array A, and the number of operations. The next line contains n positive integers not greater than 100,000, the initial elements in array A. Each of the next q lines contains an operation. Each operation is formatted as a string having no more than 30 characters, with no space characters inside. All operations are guaranteed to be valid. Warning: The dataset is large, better to use faster I/O methods.
Output
For each query, print the minimum value (rather than index) in the requested range.
Sample Input
7 5
6 2 4 8 5 1 4
query(3,7)
shift(2,4,5,7)
query(1,4)
shift(1,2)
query(2,2)
Sample Output
1
4
6
Hint
无
//线段树的应用,不是很难,写出来还是对线段树有更深一点的了解的
1 #include <stdio.h> 2 #include <string.h> 3 4 #define MAXN 100005 5 6 struct Node 7 { 8 int min; 9 int l,r; 10 }node[3*MAXN];//节点 11 int pos[MAXN];//记录叶节点的位置 12 int num[MAXN];//记录最开始的数 13 int shift[50];//记录shift里的数 14 15 int Min(int a,int b) 16 { 17 return a<b?a:b; 18 } 19 20 int Build(int left,int right,int k) 21 { 22 node[k].l=left; 23 node[k].r=right; 24 if (left==right)//到叶节点 25 { 26 node[k].min=num[left]; 27 pos[left]=k; 28 return node[k].min; 29 } 30 int mid=(left+right)/2; 31 32 node[k].min=Min(Build(left ,mid,2*k),Build(mid+1,right,2*k+1)); 33 return node[k].min; 34 } 35 36 int Query(int left,int right,int k) 37 { 38 if (left==node[k].l&&right==node[k].r) 39 { 40 return node[k].min; 41 } 42 int mid=(node[k].l+node[k].r)/2; 43 if (left>mid) return Query(left,right,2*k+1); 44 else if (right<=mid) return Query(left,right,2*k); 45 return Min(Query(left,mid,2*k),Query(mid+1,right,2*k+1)); 46 } 47 48 void Update(int k) 49 { 50 k/=2; 51 while (k!=0) 52 { 53 node[k].min=Min(node[2*k].min,node[2*k+1].min); 54 k/=2; 55 } 56 } 57 58 int Get_shift(char str[]) 59 { 60 int i,j; 61 int n=0; 62 int len=strlen(str); 63 for (i=6;i<len;i++) 64 { 65 int temp=0; 66 for (j=i;str[j]!=','&&str[j]!=')';j++) 67 { 68 temp+=str[j]-'0'; 69 temp*=10; 70 } 71 temp/=10; 72 shift[++n]=temp; 73 i=j; 74 } 75 return n; 76 } 77 78 int main() 79 { 80 int n,m; 81 int i,j; 82 scanf("%d%d",&n,&m); 83 for (i=1;i<=n;i++) 84 scanf("%d",&num[i]); 85 86 Build(1,n,1); //递归建树 87 char str[50]; 88 int left,right; 89 90 for (i=1;i<=m;i++) 91 { 92 scanf("%s",&str); 93 if (str[0]=='q') 94 { 95 left=0,right=0; 96 for (j=6;str[j]!=',';j++) 97 { 98 left+=str[j]-'0'; 99 left*=10; 100 } 101 left/=10; 102 for (j++;str[j]!=')';j++) 103 { 104 right+=str[j]-'0'; 105 right*=10; 106 } 107 right/=10; 108 printf("%d ",Query(left,right,1));//查找区间内最小的 109 } 110 if (str[0]=='s') 111 { 112 int shift_num=Get_shift(str);//获得shift里面的数 113 114 int temp=node[pos[shift[1]]].min; 115 for (j=2;j<=shift_num;j++) 116 node[pos[shift[j-1]]].min=node[pos[shift[j]]].min; 117 node[pos[shift[j-1]]].min=temp; 118 119 for (j=1;j<=shift_num;j++) 120 Update(pos[shift[j]]); 121 } 122 123 } 124 return 0; 125 }