zoukankan      html  css  js  c++  java
  • Coprime Sequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

    Total Submission(s): 217    Accepted Submission(s): 126

    Problem Description

    Do you know what is called ``Coprime Sequence''? That is a sequence consists of n positive integers, and the GCD (Greatest Common Divisor) of them is equal to 1.
    ``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements.

     

    Input

    The first line of the input contains an integer T(1T10), denoting the number of test cases.
    In each test case, there is an integer n(3n100000) in the first line, denoting the number of integers in the sequence.
    Then the following line consists of n integers a1,a2,...,an(1ai109), denoting the elements in the sequence.

     

    Output

    For each test case, print a single line containing a single integer, denoting the maximum GCD.

     

    Sample Input

     

    3
    3
    1 1 1
    5
    2 2 2 3 2
    4
    1 2 4 8

    Sample Output

    1

    2

    2

    //T 组数据,n 个数,开始时,n 个数 gcd 为 1 ,现可以任意抽走一个数,问剩下数最大 gcd 是多少?

    // st 表很好做,O(n*logn) + n * O(n) 的时间

     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 using namespace std;
     5 #define MX 100005
     6 
     7 int n,m;
     8 int dp[MX][20];
     9 int mi[MX];
    10 int data[MX];
    11 
    12 int gcd(int a,int b)
    13 {return b==0?a:gcd(b,a%b);}
    14 
    15 void build()
    16 {
    17     mi[0]=-1;
    18     for (int i=1;i<=n;i++)
    19     {
    20         mi[i]=((i&(i-1))==0) ? mi[i-1]+1:mi[i-1];   //注意位运算优先级很低
    21         dp[i][0]=data[i];
    22     }
    23     for (int k=1;k<=mi[n];k++)
    24     {
    25         for (int i=1; (i+(1<<k)-1)<=n ;i++)
    26         {
    27             dp[i][k]=gcd(dp[i][k-1],dp[i+(1<<(k-1))][k-1]);
    28         }
    29     }
    30 }
    31 
    32 int find_(int a,int b)
    33 {
    34     int x = mi[b-a+1];
    35     return gcd(dp[a][x],dp[b-(1<<x)+1][x]);
    36 }
    37 
    38 int main()
    39 {
    40     int T;
    41     cin>>T;
    42     while (T--)
    43     {
    44         scanf("%d",&n);
    45         for (int i=1;i<=n;i++)
    46             scanf("%d",&data[i]);
    47         build();
    48         int ans = 1;
    49         for (int i=1;i<=n;i++)
    50         {
    51             int res;
    52             if (i==1)
    53                 res = find_(2,n);
    54             else if (i==n)
    55                 res = find_(1,n-1);
    56             else
    57                 res = gcd(find_(1,i-1),find_(i+1,n));
    58             ans = max(ans,res);
    59         }
    60         printf("%d
    ",ans);
    61     }
    62 }
    View Code

     强行上log n 啊,啊哈哈,其实,只要从左向右扫一遍,存储gcd前缀和,再从右向左扫一遍,存gcd后缀和,然后枚举要剔除的数即可

  • 相关阅读:
    Medium | LeetCode 142. 环形链表 II
    Easy | LeetCode 141. 环形链表
    Hard | LeetCode 23. 合并K个升序链表 | 分治 | 优先队列
    std(19)内置算法find find_if
    stl(18)内置算法for_each transform
    C++引用和指针比较 指针常量和常量指针
    #pragma once和#ifndef用法
    c++变量的一些注意点 extern关键字的使用
    比特 字节 地址 类型 编码 32位 64位
    stl(16)stl内置的一些函数对象
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/6826988.html
Copyright © 2011-2022 走看看