zoukankan      html  css  js  c++  java
  • Fraction

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

    Total Submission(s): 1010    Accepted Submission(s): 532


    Problem Description

    Mr. Frog recently studied how to add two fractions up, and he came up with an evil idea to trouble you by asking you to calculate the result of the formula below:


    As a talent, can you figure out the answer correctly?

     

    Input

    The first line contains only one integer T, which indicates the number of test cases.

    For each test case, the first line contains only one integer n (n8).

    The second line contains n integers: a1,a2,an(1ai10).
    The third line contains n integers: b1,b2,,bn(1bi10).

     

    Output

    For each case, print a line “Case #x: p q”, where x is the case number (starting from 1) and p/q indicates the answer.

    You should promise that p/q is irreducible.

     

    Sample Input

    1
    2
    1 1
    2 3

     

    Sample Output

    Case #1: 1 2

    Hint

    Here are the details for the first sample: 2/(1+3/1) = 1/2

    //题意很容易理解,就是求出这样的式子的分子,分母最简形式

    模拟一下即可

     1 #include <iostream>
     2 #include <math.h>
     3 #include <stdio.h>
     4 using namespace std;
     5 #define MX 105
     6 int n;
     7 int A[MX];
     8 int B[MX];
     9 
    10 int gcd(int a,int b)
    11 {
    12     return b==0?a:gcd(b,a%b);
    13 }
    14 
    15 int main()
    16 {
    17     int T;
    18     scanf("%d",&T);
    19     for (int cnt=1;cnt<=T;cnt++)
    20     {
    21         scanf("%d",&n);
    22         for (int i=1;i<=n;i++)
    23             scanf("%d",&A[i]);
    24         for (int i=1;i<=n;i++)
    25             scanf("%d",&B[i]);
    26         int p=B[n],q=A[n];
    27         int a,b;
    28         for (int i=n-1;i>=1;i--)
    29         {
    30             a = A[i],b = B[i];
    31             a = a*q + p;
    32             b = b*q;
    33 
    34             p = b ;
    35             q = a;
    36         }
    37         int yue = gcd(p,q);
    38         printf("Case #%d: %d %d
    ",cnt,p/yue,q/yue);
    39     }
    40     return 0;
    41 }
    View Code
  • 相关阅读:
    lua面向对象(定义与调用)
    luastring(字符串)
    luatable(表)
    lua面向对象(创建与实例化)
    pandas安装方法(常规安装失败解决方法)
    lua循环
    windows常用命令schtasks
    ios UI自动化 appium参数配置
    ios UI自动化环境配置
    jmeter进行websocket 通信
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/6842311.html
Copyright © 2011-2022 走看看