zoukankan      html  css  js  c++  java
  • Fraction

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

    Total Submission(s): 1010    Accepted Submission(s): 532


    Problem Description

    Mr. Frog recently studied how to add two fractions up, and he came up with an evil idea to trouble you by asking you to calculate the result of the formula below:


    As a talent, can you figure out the answer correctly?

     

    Input

    The first line contains only one integer T, which indicates the number of test cases.

    For each test case, the first line contains only one integer n (n8).

    The second line contains n integers: a1,a2,an(1ai10).
    The third line contains n integers: b1,b2,,bn(1bi10).

     

    Output

    For each case, print a line “Case #x: p q”, where x is the case number (starting from 1) and p/q indicates the answer.

    You should promise that p/q is irreducible.

     

    Sample Input

    1
    2
    1 1
    2 3

     

    Sample Output

    Case #1: 1 2

    Hint

    Here are the details for the first sample: 2/(1+3/1) = 1/2

    //题意很容易理解,就是求出这样的式子的分子,分母最简形式

    模拟一下即可

     1 #include <iostream>
     2 #include <math.h>
     3 #include <stdio.h>
     4 using namespace std;
     5 #define MX 105
     6 int n;
     7 int A[MX];
     8 int B[MX];
     9 
    10 int gcd(int a,int b)
    11 {
    12     return b==0?a:gcd(b,a%b);
    13 }
    14 
    15 int main()
    16 {
    17     int T;
    18     scanf("%d",&T);
    19     for (int cnt=1;cnt<=T;cnt++)
    20     {
    21         scanf("%d",&n);
    22         for (int i=1;i<=n;i++)
    23             scanf("%d",&A[i]);
    24         for (int i=1;i<=n;i++)
    25             scanf("%d",&B[i]);
    26         int p=B[n],q=A[n];
    27         int a,b;
    28         for (int i=n-1;i>=1;i--)
    29         {
    30             a = A[i],b = B[i];
    31             a = a*q + p;
    32             b = b*q;
    33 
    34             p = b ;
    35             q = a;
    36         }
    37         int yue = gcd(p,q);
    38         printf("Case #%d: %d %d
    ",cnt,p/yue,q/yue);
    39     }
    40     return 0;
    41 }
    View Code
  • 相关阅读:
    理解k8s资源限制系列(二):cpu time
    计算机网络 第五章:传输层
    SYN 攻击原理及解决方法
    Lua中 pairs和ipairs的区别
    nginx里的变量,实现简单过滤。
    LVS负载均衡(LVS简介、三种工作模式、十种调度算法)
    Lua中的loadfile、dofile、require详解
    NGINX 上的限流
    shell 输出json格式的内容
    xilinx资源
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/6842311.html
Copyright © 2011-2022 走看看