zoukankan      html  css  js  c++  java
  • Sequence I

    Sequence I (hdu 5918)

    Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

    Total Submission(s): 1938    Accepted Submission(s): 730


    Problem Description

    Mr. Frog has two sequences a1,a2,,an and b1,b2,,bm and a number p. He wants to know the number of positions q such that sequence b1,b2,,bmis exactly the sequence aq,aq+p,aq+2p,,aq+(m1)p where q+(m1)pn and q1.

     

    Input

    The first line contains only one integer T100, which indicates the number of test cases.

    Each test case contains three lines.

    The first line contains three space-separated integers 1n106,1m106 and 1p106.

    The second line contains n integers a1,a2,,an(1ai109).

    the third line contains m integers b1,b2,,bm(1bi109).

     

    Output

    For each test case, output one line “Case #x: y”, where x is the case number (starting from 1) and y is the number of valid q’s.

     

    Sample Input

    2
    6 3 1
    1 2 3 1 2 3
    1 2 3
    6
    3 2 1
    3 2 2 3 1 1
    2 3

    Sample Output

    Case #1: 2

    Case #2: 1

    //题意: 字符串匹配,就是,n 长主串,m 长匹配串,k 长间隔,问有多少种匹配?

    分成 k 组就好,这题可以用来测测你的 KMP 模板哦,数据还可以,就是,就算是朴素匹配也能过。。。

    做完我算是真的理解KMP了,对于字符串,有个 结尾的特性,所以优化的 next 是可行的,但是这种却不行,而且,优化的并不好求匹配数。

     KMP 模板 : http://www.cnblogs.com/haoabcd2010/p/6722073.html

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 #include <vector>
     5 using namespace std;
     6 #define MX 1000005
     7 
     8 int n,m,p;
     9 int ans;
    10 int t[MX];
    11 vector<int> zu[MX];
    12 int net[MX];
    13 
    14 void Init()
    15 {
    16     for (int i=0;i<=n;i++)
    17         zu[i].clear();
    18 }
    19 
    20 void get_next()
    21 {
    22     int i=0,j=-1;
    23     net[0]=-1;
    24     while (i<m)
    25     {
    26         if (j==-1||t[i]==t[j]) net[++i]=++j;
    27         else j = net[j];
    28     }
    29 
    30     for (int i=0;i<=m;i++)
    31         printf("%d ",net[i]);
    32     printf("
    ");
    33 }
    34 
    35 void KMP(int x)
    36 {
    37     int i=0,j=0;
    38     int len = zu[x].size();
    39     while(i<len&&j<m)
    40     {
    41         if (j==-1||zu[x][i]==t[j])
    42         {
    43             i++,j++;
    44         }
    45         else j=net[j];
    46         if (j==m)
    47         {
    48             ans++;
    49             j = net[j];
    50         }
    51     }
    52 }
    53 
    54 int main()
    55 {
    56     int T;
    57     scanf("%d",&T);
    58     for(int cas=1;cas<=T;cas++)
    59     {
    60         scanf("%d%d%d",&n,&m,&p);
    61         Init();
    62         for (int i=0;i<n;i++)
    63         {
    64             int x;
    65             scanf("%d",&x);
    66             zu[i%p].push_back(x);
    67         }
    68         for (int i=0;i<m;i++)
    69             scanf("%d",&t[i]);
    70         get_next();
    71 
    72         ans = 0;
    73         for (int i=0;i<p;i++) KMP(i);
    74         printf("Case #%d: %d
    ",cas,ans);
    75     }
    76     return 0;
    77 }
    View Code
  • 相关阅读:
    __name__使用方法,模块查找顺序和模块的绝对导入
    模块
    ATM程序结构
    迭代器
    常用内置方法
    生成式,匿名函数及内置函数部分使用方法
    算法之二分法和三元表达式
    redis配置文件
    PythonStudy——shutil 模块
    PythonStudy——pickle 模块 (泡菜)
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/6842448.html
Copyright © 2011-2022 走看看