zoukankan      html  css  js  c++  java
  • Partial Sum

    Partial Sum

    Accepted : 80   Submit : 353
    Time Limit : 3000 MS   Memory Limit : 65536 KB 

    Partial Sum

    Bobo has a integer sequence a1,a2,,an of length n . Each time, he selects two ends 0l<rn and add |rj=l+1aj|C into a counter which is zero initially. He repeats the selection for at most m times.

    If each end can be selected at most once (either as left or right), find out the maximum sum Bobo may have.

    Input

    The input contains zero or more test cases and is terminated by end-of-file. For each test case:

    The first line contains three integers n, m, C . The second line contains integers a1,a2,,an .

    • 2n105
    • 12mn+1
    • |ai|,C104
    • The sum of n does not exceed 106 .

    Output

    For each test cases, output an integer which denotes the maximum.

    Sample Input

    4 1 1
    -1 2 2 -1
    4 2 1
    -1 2 2 -1
    4 2 2
    -1 2 2 -1
    4 2 10
    -1 2 2 -1
    

    Sample Output

    3
    4
    2
    0
    

    //题意,最多选 m 次区间的和的绝对值 - c 的值,要求和最大,且所有点最多选一次作为端点

    //贪心题,只要把前缀和排序,每次选最大的,最小的,直到选出值为负数,或等于m次,即停止

     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include <algorithm>
     5 using namespace std;
     6 #define MX 100005
     7 #define LL long long
     8 
     9 int n,m,c;
    10 int num[MX];
    11 LL sum[MX];
    12 
    13 int main()
    14 {
    15     while(~scanf("%d%d%d",&n,&m,&c))
    16     {
    17         sum[0]=0;
    18         for (int i=1;i<=n;i++)
    19         {
    20             scanf("%d",&num[i]);
    21             sum[i]=sum[i-1]+num[i];
    22         }
    23         sort(sum,sum+1+n);
    24         int l = 0 ,r = n;
    25         LL ans = 0;
    26 
    27         while (l<m&&sum[r]-sum[l]>c)
    28         {
    29             ans+=abs(sum[r]-sum[l])-c;
    30             l++,r--;
    31         }
    32         printf("%I64d
    ",ans);
    33     }
    34     return 0;
    35 }
    View Code
  • 相关阅读:
    01月04日假期学习
    个人加分项
    12月16日总结
    12月15日总结
    12月13日总结
    01月01日假期学习
    01月02日假期学习
    12月14日总结
    12月17日总结
    01月05日假期学习
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/6861598.html
Copyright © 2011-2022 走看看