zoukankan      html  css  js  c++  java
  • Mapperreducer的字母次数的统计案例

    1、把需要的处理的文件先得传输到hdfs上去 

    2、把mapreducer程序打成jar包传输到linux中

    3、在yarn上跑jar包   hadoop  jar     jar包名       main方法的入口名称

    一、导入pom文件

        <repositories>
            <repository>
                <id>cloudera</id>
                <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
            </repository>
        </repositories>
        <dependencies>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-client</artifactId>
                <version>2.6.0-mr1-cdh5.14.0</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-common</artifactId>
                <version>2.6.0-cdh5.14.0</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-hdfs</artifactId>
                <version>2.6.0-cdh5.14.0</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-mapreduce-client-core</artifactId>
                <version>2.6.0-cdh5.14.0</version>
            </dependency>
            <dependency>
                <groupId>junit</groupId>
                <artifactId>junit</artifactId>
                <version>4.12</version>
            </dependency>
        </dependencies>
        <build>
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.2</version>
                    <configuration>
                        <source>1.8</source>
                        <target>1.8</target>
                    </configuration>
                </plugin>
            </plugins>
        </build>

    二、mapper阶段

    /**
     * @ClassName WordCountMapper
     * @Description mapTask程序 任务:K1,V1--->K2,V2
     * K1   V1   (行偏移量,行文本数据)
     * 0    hadoop hive sqoop oozie azkaban kafka
     * 37   hello lisi zhaoliu hadoop kafka flume
     *------------------------------------------
     * K2		V2
     * hadoop	1
     * hive		1
     */
    public class WordCountMapper extends Mapper<LongWritable,Text,Text,LongWritable> {
        /*
           map方法的调用,看上游的InputFormat的类型,比如这里我们会是用TextInputFormat,一行一行的发送,每发送一行数据,就调用一次map方法
           参数1和2 K1和V1  参数3:context上下文 环境 域对象
         */
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            //1.得到V1 根据空格切割  v1是通过inputformat得到的  inputformat默认的是一行一行的读数据的
            String[] words = value.toString().split(" ");
    
            Text text = new Text();
            LongWritable longWritable = new LongWritable();
            //循环发送
            for (String word : words) {
                //2.发送数据 K2,V2  (hadoop,1)
                text.set(word);
                longWritable.set(1);
                // 发送
                context.write(text,longWritable);
            }
        }
    }

    三、reducer阶段

    /**
     * @ClassName WordCountReducer
     * @Description reducer合并 K2,V2--->K3,V3
     * K2		V2
     * hadoop 	<1,1,1>
     * hive		<1,1>
     * ------------------------
     * K3		V3
     * hadoop	3
     * hive		2
     */
    public class WordCountReducer extends Reducer<Text,LongWritable,Text,LongWritable> {
        @Override
        protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
            //1.遍历V2集合,进行统计操作
            long count = 0;
            for (LongWritable value : values) {
                count+=value.get();
            }
            //2.将K2作为K3  将统计的结果作为V3 向下发送
            context.write(key,new LongWritable(count));
        }

    四、runner阶段

    /**
     * @ClassName WordCountRunner
     * @Description 任务的组装和任务的提交
     */
    public class WordCountRunner implements Serializable{
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
            Configuration conf = new Configuration();
            //创建任务
            Job job = Job.getInstance(conf, "wordcount");  //wordcount为任务的名称
            job.setJarByClass(WordCountRunner.class);//在集群上运行要加上
    
            //第一步:设置InputFormat和数据的输入路径
            job.setInputFormatClass(TextInputFormat.class);
            TextInputFormat.addInputPath(job,new Path("hdfs://node01:9000/hadoop32/words.txt"));
            //第二步:设置自定义的Mapper类并且设置输出类型
            job.setMapperClass(WordCountMapper.class);
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(LongWritable.class);
            //第三、四、五、六步 省略
    
            //第七步:设置自定义的Reducer类并且设置输出类型
            job.setReducerClass(WordCountReducer.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(LongWritable.class);
    
            //第八步:设置OutputFormat和数据的输出路径
            job.setOutputFormatClass(TextOutputFormat.class);
            //强调,MR默认输出路径是不能存在的,如果存在会报错
            TextOutputFormat.setOutputPath(job,new Path("hdfs://node01:9000/hadoop32/wordcount"));
            //得到该文件夹 防止hdfs中已存在文件输入的文件夹
            FileSystem fileSystem = FileSystem.get(new URI("hdfs://node01:9000"), conf);
            if(fileSystem.exists(new Path("hdfs://node01:9000/hadoop32/wordcount"))){
                fileSystem.delete(new Path("hdfs://node01:9000/hadoop32/wordcount"), true);
            }
            // 任务的提交
            boolean bl = job.waitForCompletion(true);
            System.exit(bl?0:1);
        }
    }
  • 相关阅读:
    Hibernate Tool建Entity
    MySQL新建用户和库表
    用友U8年度账结转 常用凭证丢失
    U890采购入库单修改供应商
    robocopy
    sql的left join 、right join 、inner join之间的区别
    Linux永久修改系统时间
    UF清log
    下拉式选单连动设定
    SQL取最大值编码(自动编码)
  • 原文地址:https://www.cnblogs.com/haojia/p/12386205.html
Copyright © 2011-2022 走看看