zoukankan      html  css  js  c++  java
  • matlab中矩阵和向量的创建

    1、向量的创建

    1)直接输入:

    行向量:a=[1,2,3,4,5]
    
    列向量:a=[1;2;3;4;5]
    

      

    2)用“:”生成向量

      a=J:K 生成的行向量是a=[J,J+1,…,K]
    
      a=J:D:K 生成行向量a=[J,J+D,…,J+m*D],m=fix((K-J)/D)
    

      

    3)函数linspace 用来生成数据按等差形式排列的行向量

      x=linspace(X1,X2):在X1和X2间生成100个线性分布的数据,相邻的两个数据的差保持不变。构成等差数列。
    
      x=linspace(X1,X2,n): 在X1和X2间生成n个线性分布的数据,相邻的两个数据的差保持不变。构成等差数列。
    

      

    4)函数logspace用来生成等比形式排列的行向量

      X=logspace(x1,x2) 在x1和x2之间生成50个对数等分数据的行向量。构成等比数列,数列的第一项x(1)=10x1,x(50)=10x2
    
      X=logspace(x1,x2,n) 在x1和x2之间生成n个对数等分数据的行向量。构成等比数列,数列的第一项x(1)=10x1,x(n)=10x2
    
    注:向量的的转置:x=(0,5)’
    

      

     

    2、矩阵的创建

     

    1)直接输入:

    将数据括在[]中,同一行的元素用空格或逗号隔开,每一行可以用回车或是分号结束。
    
    如:a=[1,2,3;3,4,5],运行后:
    
    a =
    
         1     2     3
    
         3     4     5
    

      

     

    2)函数eye,生成单位矩阵

    eye(n) :生成n*n阶单位E
    
    eye(m,n):生成m*n的矩阵E,对角线元素为1,其他为0
    
    eye(size(A)):生成一个矩阵A大小相同的单位矩阵
    
    eye(m,n,classname):对角线上生成的元素是1,数据类型用classname指定。其数据类型可以是:duoble、single、int8、uint8、int16、uint16、int32、uint32 。
    

      

          

    3)函数ones  用ones生成全1的矩阵

    ones(n) : 生成n*n的全1矩阵
    
    ones(m,n) : 生成m*n的全1矩阵
    
    ones(size(A)) : 生成与矩阵A大小相同的全1矩阵
    
    ones(m,n,p,…)生成m*n*p*….的全1的多维矩阵
    
    ones(m,n,…,classname)制定数据类型为classname
    

      

     

    4)函数zeros 函数zeros生成全0矩阵

    zeros(n):生成n*n的全0矩阵
    
    zeros(m,n:)生成m*n的全0矩阵
    
    zeros(size(A)): 生成与矩阵A大小相同的全0矩阵
    
    zeros (m,n,p,…)生成m*n*p*….的全0的多维矩阵
    
    zeros (m,n,…,classname)指定数据类型为classname
    

      

     

    5)函数rand 函数rand用来生成[0,1]之间均匀分布的随机函数,其调用格式是:

    Y=rand:生成一个随机数
    
    Y=rand(n):生成n*n的随机矩阵
    
    Y=rand(m,n):生成m*n的随机矩阵
    
    Y=rand(size(A)):生成与矩阵A大小相同的随机矩阵
    
    Y=rand(m,n,p,…):生成m*n*p*…的随机数多维数组
    

      

     

    6)函数randn 函数rand用来生成服从正态分布的随机函数,其调用格式是:

    Y=randn:生成一个服从标准正态分布的随机数
    
    Y=randn(n):生成n*n的服从标准正态分布的随机矩阵
    
    Y=randn(m,n):生成m*n的服从标准正态分布的随机矩阵
    
    Y=randn(size(A)):生成与矩阵A大小相同的服从标准正态分布的随机矩阵
    
    Y=randn(m,n,p,…):生成m*n*p*…的服从标准正态分布的随机数多维数组
    

      

     

    3、矩阵元素的提取与替换

     

    1)  单个元素的提取

    如:a=[1,2,3;3,4,5],运行后:
    
    a =
    
        1     2     3
    
        3     4     5
    
    输入b=a(1,2)
    
    b =
    
         2    
    

      

      

     

    2)  提取矩阵中某一行的元素,

    如:a=[1,2,3;3,4,5],运行后:
    
    a =
    
        1     2     3
    
        3     4     5
    
    输入b=a(1,:)
    
    b =
    
         1     2     3
    

      

     

    3)  提取矩阵中某一列:

    如:a=[1,2,3;3,4,5],运行后:
    
    a =
    
        1     2     3
    
        3     4     5
    
    输入b=a(:,1)
    
    b =
    
         1
    
         3
    

      

     

    4)  提取矩阵中的多行元素

    如:a=[1,2,3;3,4,5],运行后:
    
    a =
    
        1     2     3
    
        3     4     5
    
    输入b=a([1,2],:)
    
    b =
    
         1     2     3
    
         3     4     5
    

      

     

    5)  提取矩阵中的多列元素

    如:a=[1,2,3;3,4,5],运行后:
    
    a =
    
        1     2     3
    
        3     4     5
    
    输入b=a(:,[1,3])
    
    b =
    
         1     3
    
         3     5
    

      

     

    6)  提取矩阵中多行多列交叉点上的元素

    如:a=[1,2,3;3,4,5],运行后:
    
    a =
    
        1     2     3
    
        3     4     5
    
    输入b=a([1,2],[1,3])
    
    b =
    
         1     3
    
         3     5
    

      

     

    7)  单个元素的替换:

    如:a=[1,2,3;3,4,5],运行后:
    
    a =
    
        1     2     3
    
        3     4     5
    
    输入:a(2,3)=-1
    
    a =
    
         1     2     3
    
         3     4    -1
    

      

     

    4、矩阵元素的重排和复制排列

     

    1)  矩阵元素的重排

    B=reshape(A,m,n):返回的是一个m*n矩阵B,矩阵B的元素就是矩阵A的元素,若矩阵A的元素不是m*n个则提示错误。
    
    B=reshape(A,m,n,p):返回的是一个多维的数组B,数组B中的元素个数和矩阵A中的元素个数相等
    
    B=reshape(A,…,[],…):可以默认其中的一个维数
    
    B=reshape(A,siz) : 由向量siz指定数组B的维数,要求siz的各元素之积等于矩阵A的元素个数
    

      

     

    2)  矩阵的复制排列  函数是repmat

    B=repmat(A,n):返回B是一个n*n块大小的矩阵,每一块矩阵都是A
    
    B=repmat(A,m,n):返回值是由m*n个块组成的大矩阵,每一个块都是矩阵A。
    
    B=repmat(A,[m,n,p,…]):返回值B是一个多维数组形式的块,每一个块都是矩阵A
    
     
    

      

    5、矩阵的翻转和旋转

     

    1)矩阵的左右翻转 左右翻转函数是fliplr,调用格式:

    B=fliplr(A):将矩阵A左右翻转成矩阵B。
    
    输入:A=[1,2,3;3,4,2]
    
    A =
    
         1     2     3
    
         3     4     2
    
    输入:B=fliplr(A)
    
    B =
    
         3     2     1
    
      2     4     3
    

      

     

    2)矩阵上下翻转 函数:flipud,调用格式:

    B=flipud(A):把矩阵A上下翻转成矩阵B
    

      

     

    3)多维数组翻转 函数:flipdim,调用格式:

    B=flipdim(A,dim):把矩阵或多维数组A沿指定维数翻转成B
     
    

      

    4)  矩阵的旋转  函数:rot90,调用格式:

    B=rot90(A):矩阵B是矩阵A沿逆时针方向旋转90。得到的
    
    B=rot90(A,k):矩阵B是矩阵A沿逆时针方向旋转k*90。得到的(要想顺时针旋转,k取-1)
    

      

    6、矩阵的生成与提取函数

     

    1)  对角线函数 对角线函数diag既可以用来生成矩阵,又可以来提取矩阵的对角线元素,其调用格式:

    a)         A=diag(v,k):当v是有n个元素的向量,返回矩阵A是行列数为n+|k|的方阵。向量v的元素位于A的第k条对角线上。K=0 对应主对角线,k>0对应主对角线以上,k<0对应主对角线以下。
    
    b)         A=diag(v):将向量v的元素放在方阵A的主对角线上,等同于A=diag(v,k)中k=0的情况。
    
    c)         v=diag(A,k):提取矩阵A的第k条对角线上的元素于列向量v中。
    
    d)         v=diag(A):提取矩阵A的主对角线元素于v中,这种调用等同于v=diag(A,k)中k=0的情况。
    

      

    2)  下三角阵的提取  用函数tril,调用格式:

    a)         L=tril(A): 提取矩阵A的下三角部分
    
    b)         L=tril(A,k):提取矩阵A的第k条对角线以下部分。K=0 对应主对角线,k>0对应主对角线以上,k<0对应主对角线以下。
    
    3)  上三角阵的提取  函数triu,调用格式:
    
    a)         U=triu(A): 提取矩阵A的上三角部分元素
    
    b)         U=triu(A,k): 提取矩阵A的第k条对角线以上的元素。K=0 对应主对角线,k>0对应主对角线以上,k<0对应主对角线以下。
    

      

     

     

  • 相关阅读:
    洛谷P1208 [USACO1.3]混合牛奶 Mixing Milk 题解 结构体排序
    信息学竞赛中C语言的输入输出
    Python 关键字参数和可变参数
    大白话讲解神经网络算法,原理如此简单!
    idea debug flink1.12 sqlClient 源码
    Flink SQL如何保证分topic有序
    Flink 1.12.0 SQL Connector支持 Oracle
    Flink实战之Flink SQL connector支持并行度配置
    java程序中执行脚本时具有的是那个用户的权限呢?
    clickhouse日期等函数的使用
  • 原文地址:https://www.cnblogs.com/haore147/p/3633050.html
Copyright © 2011-2022 走看看