zoukankan      html  css  js  c++  java
  • 频谱分析代码片段

    ldcca_tms = img_To_4D_array('C:UsersAdministratorDesktopcontrast2014-05-20-12-16.img');
    spm_tms = img_To_4D_array('C:UsersAdministratorDesktopcontrast
    o_phycaa.img');
    
    % x = size(spm_tms,1);
    % y = size(spm_tms,2);
    % z = size(spm_tms,3);
    % 
    % %spm_tms_1d = reshape(spm_tms ,[1,x*y*z] );
    % 
    % 
    % x = size(ldcca_tms,1);
    % y = size(ldcca_tms,2);
    % z = size(ldcca_tms,3);
    % 
    % % ldcca_tms_1d = reshape( ldcca_tms , [1,x*y*z] );
    
    
    mask_ldcca_tms = ldcca_tms > 0;
    
    inv_mask_ldcca_tms = ~mask_ldcca_tms;
    
    mask_spm_tms = spm_tms > 0;
    
    inv_mask_spm_tms = ~mask_spm_tms;
    
    
    %% 先提取出被去噪去除的点的时间过程  实验结果,去除了435个点,
    
    % left_spm_tms = spm_tms(inv_mask_ldcca_tms);
    
    tmp_spm = spm_tms .* inv_mask_ldcca_tms;
    
    
    %>>这是最后的模板
    mask_big_left_spm_tms = tmp_spm>0;
    
    % big_left_spm_tms = left_spm_tms(left_spm_tms>0);
    
    
    % aa = size(big_left_spm_tms)
    
    
    %% 利用我们的去噪算法,得到的新的点,一个点都没有增加
    
    % left_ldcca_tms = ldcca_tms(ldcca_tms);
    
    tmp_ldcca = ldcca_tms .* inv_mask_spm_tms;
    
    %>>这是最后的模板
    mask_big_left_ldcca_tms = tmp_ldcca > 0; 
    
    % big_left_ldcca_tms = left_ldcca_tms( left_ldcca_tms>0 );
    
    % bb = size(big_left_ldcca_tms)
    
    
    
    %% 提取被去除的点的时间过程
    %--brain functional 4d data
    
    datacell_4d   = load_untouch_nii('C:UsersAdministratorDesktopworkspacephycaa_plus_2104_03_27func_3d.nii'); 
    
    %datacell_4d   = load_untouch_nii('F:4Dfilefunc_3d_PHYCAA_step1+2.nii'); 
    
    
    
    
    ldim = size(datacell_4d.img);
    
    
    fullMsk = repmat( mask_big_left_spm_tms, [1,1,1,ldim(4)] );
    left_spm_tms_2d = reshape( datacell_4d.img(fullMsk>0), [], ldim(4) );
    
    inv_fullMsk =  repmat( mask_spm_tms.*(~mask_big_left_spm_tms), [1,1,1,ldim(4)] );
    inv_left_spm_tms_2d = reshape( datacell_4d.img(inv_fullMsk>0), [], ldim(4) );
    
    
    
    %% fft decomposition
    
    TR =2;
    
    
      % parameters for spectral estimation
        Fny    = 0.5 * (1/ TR);                % nyquist frequency
        NFFT   = 2^nextpow2(70);           % Next power of 2 from length of time-axis
        f      = Fny*linspace(0,1,NFFT/2+1);  % fourier data corresponds to these frequency points
        numlow = sum( f <= 0.1 );           % count the number of frequency points below threshold
    
    % =========================================================================
    %   get ordered spectral estimates    
    
    powHgh =[];
    powLow =[];
    
    inv_powHgh=[];
    inv_powLow=[];
    
    i=1;
    
    %for i=1:size(left_spm_tms_2d,1)
        % get sum of spectral power values, for f > dataInfo.FreqCut
        powMat  = abs( fft( double(left_spm_tms_2d) , NFFT ,2) ) / 70; 
        powMat  = powMat(:,1:NFFT/2+1);
        powHgh  = sum( sqrt(powMat(:,numlow+1:end)), 2 );
        powLow  = sum( sqrt(powMat(:,1:numlow)), 2 );
    %end
    
    mean_powHgh = mean(powHgh);
    median_powHgh = median(powHgh);
    min_powHgh = min(powHgh);
    
    mean_powLow = mean(powLow);
    median_powLow = median(powLow);
    min_powLow = min(powLow);
    
    %for i=1:size(inv_left_spm_tms_2d,1)
        % get sum of spectral power values, for f > dataInfo.FreqCut
        inv_powMat  = abs( fft( double(inv_left_spm_tms_2d) , NFFT ,2) ) / 70; 
        inv_powMat  = inv_powMat(:,1:NFFT/2+1);
        inv_powHgh  = sum( sqrt(inv_powMat(:,numlow+1:end)), 2 );
        inv_powLow  = sum( sqrt(inv_powMat(:,1:numlow)), 2 );
    %end
    
    inv_mean_powHgh = mean(inv_powHgh);
    inv_median_powHgh = median(inv_powHgh);
    inv_min_powHgh = min(inv_powHgh);
    
    inv_mean_powLow = mean(inv_powLow);
    inv_median_powLow = median(inv_powLow);
    inv_min_powLow = min(inv_powLow);
    
    
    %vol_4d(:,:,slice,:);
    

      

  • 相关阅读:
    Go学习2-切片
    Go学习1-MOD
    lua学习之逻辑运算符not,and,or
    google protobuf c++ 反射
    我要谴责一下,你们复制别人的答案好歹仔细看看
    远程登录redis
    openssl进行RSA加解密(C++)
    linux通过进程名查看其占用端口
    简体字丶冯|服务网关kong-docker安装
    简体字冯|docker-安装docker私有库
  • 原文地址:https://www.cnblogs.com/haore147/p/3795807.html
Copyright © 2011-2022 走看看