zoukankan      html  css  js  c++  java
  • 【Spring Cloud & Alibaba 开源全栈项目实战】:SpringBoot整合ELK实现分布式日志收集

    一. 前言

    其实早前就想计划出这篇文章,但是最近主要精力在完善微服务、系统权限设计、微信小程序和管理前端的功能,不过好在有群里小伙伴的一起帮忙反馈问题,基础版的功能已经差不多,也在此谢过,希望今后大家还是能够相互学习,一起进步~

    ELK是Elasticsearch、Logstash、Kibana三个开源软件的组合,相信很多童鞋使用ELK有去做过分布式日志收集。流程概括为:微服务应用把Logback输出的日志通过HTTP传输至LogStash,然后经过分析过滤,转发至ES,再由Kibana提供检索和统计可视化界面。

    在本实战案例中,使用Spring AOP、Logback横切认证接口来记录用户登录日志,收集到ELK,通过SpringBoot整合RestHighLevelClient实现对ElasticSearch数据检索和统计。从日志搜集到数据统计,一次性的走个完整,快速入门ElasticSearch。

    本篇涉及的前后端全部源码已上传gitee和github,熟悉有来项目的童鞋快速过一下步骤即可。

    项目名称 Github 码云
    后台 youlai-mall youlai-mall
    前端 youlai-mall-admin youlai-mall-admin

    二. 需求

    基于ELK的日志搜集的功能,本篇实现的需求如下:

    1. 记录系统用户登录日志,信息包括用户IP、登录耗时、认证令牌JWT
    2. 统计十天内用户登录次数、今日访问IP和总访问IP
    3. 充分利用记录的JWT信息,通过黑名单的方式让JWT失效实现强制下线

    实现效果:

    访问地址:http://www.youlai.tech

    • Kibana日志可视化统计

    • 登录次数统计、今日访问IP统计、总访问IP统计

    • 登录信息,强制用户下线,演示的是自己强制自己下线的效果

    三. Docker快速搭建ELK环境

    1. 拉取镜像

    docker pull elasticsearch:7.10.1
    docker pull kibana:7.10.1
    docker pull logstash:7.10.1
    

    2. elasticsearch部署

    1. 环境准备

    # 创建文件
    mkdir -p /opt/elasticsearch/{plugins,data}  /etc/elasticsearch
    touch /etc/elasticsearch/elasticsearch.yml 
    chmod -R 777 /opt/elasticsearch/data/  
    vim /etc/elasticsearch/elasticsearch.yml
    # 写入
    cluster.name: elasticsearch
    http.cors.enabled: true                               
    http.cors.allow-origin: "*"                     
    http.host: 0.0.0.0
    node.max_local_storage_nodes: 100
    

    2. 启动容器

    docker run -d --name=elasticsearch --restart=always 
    -e discovery.type=single-node 
    -e ES_JAVA_OPTS="-Xms256m -Xmx256m" 
    -p 9200:9200 
    -p 9300:9300 
    -v /etc/elasticsearch/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml 
    -v /opt/elasticsearch/data:/usr/share/elasticsearch/data 
    -v /opt/elasticsearch/plugins:/usr/share/elasticsearch/plugins 
    elasticsearch:7.10.1
    

    3. 验证和查看ElasticSearch版本

    curl -XGET localhost:9200
    

    2. kibana部署

    1. 环境准备

    # 创建文件
    mkdir -p /etc/kibana
    vim /etc/kibana/kibana.yml
    
    # 写入
    server.name: kibana
    server.host: "0"
    elasticsearch.hosts: [ "http://elasticsearch:9200" ]
    i18n.locale: "zh-CN"
    

    2. 启动容器

    docker run -d --restart always -p 5601:5601 --name kibana --link elasticsearch 
    -e ELASTICSEARCH_URL=http://elasticsearch:9200 
    -v /etc/kibana/kibana.yml:/usr/share/kibana/config/kibana.yml 
    kibana:7.10.1
    

    3. logstash部署

    1. 环境准备

    • 配置 logstash.yml
    # 创建文件
    mkdir -p /etc/logstash/config
    vim /etc/logstash/config/logstash.yml
    
    # 写入
    http.host: "0.0.0.0"
    xpack.monitoring.elasticsearch.hosts: [ "http://elasticsearch:9200" ]
    xpack.management.pipeline.id: ["main"]
    
    • 配置pipeline.yml
    # 创建文件
    vim  /etc/logstash/config/pipeline.yml 
    
    # 写入(注意空格)
    - pipeline.id: main
      path.config: "/usr/share/logstash/pipeline/logstash.config"
    
    • 配置logstash.conf
    # 创建文件
    mkdir -p /etc/logstash/pipeline
    vim /etc/logstash/pipeline/logstash.conf 
    
    # 写入
    input {
        tcp {
          port => 5044
          mode => "server"
          host => "0.0.0.0"
          codec => json_lines
        }
    }
    filter{
    
    }
    output {
        elasticsearch {
            hosts => ["elasticsearch:9200"]
            # 索引名称,没有会自动创建
            index => "%{[project]}-%{[action]}-%{+YYYY-MM-dd}"
        }
    }
    
    

    2. 启动容器

    docker run -d --restart always -p 5044:5044 -p 9600:9600 --name logstash --link elasticsearch 
    -v /etc/logstash/config/logstash.yml:/usr/share/logstash/config/logstash.yml 
    -v /etc/logstash/config/pipeline.yml:/usr/share/logstash/config/pipeline.yml 
    -v /etc/logstash/pipeline/logstash.conf:/usr/share/logstash/pipeline/logstash.conf 
    logstash:7.10.1
    

    4. 测试

    访问: http://localhost:5601/

    四. Spring AOP + Logback 横切打印登录日志

    1. Spring AOP横切认证接口添加日志

    代码坐标: common-web#LoginLogAspect

    @Aspect
    @Component
    @AllArgsConstructor
    @Slf4j
    @ConditionalOnProperty(value = "spring.application.name", havingValue = "youlai-auth")
    public class LoginLogAspect {
    
        @Pointcut("execution(public * com.youlai.auth.controller.AuthController.postAccessToken(..))")
        public void Log() {
        }
    
        @Around("Log()")
        public Object doAround(ProceedingJoinPoint joinPoint) throws Throwable {
    
            LocalDateTime startTime = LocalDateTime.now();
            Object result = joinPoint.proceed();
    
            // 获取请求信息
            ServletRequestAttributes attributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
            HttpServletRequest request = attributes.getRequest();
    
            // 刷新token不记录
            String grantType=request.getParameter(AuthConstants.GRANT_TYPE_KEY);
            if(grantType.equals(AuthConstants.REFRESH_TOKEN)){
                return result;
            }
    
            // 时间统计
            LocalDateTime endTime = LocalDateTime.now();
            long elapsedTime = Duration.between(startTime, endTime).toMillis(); // 请求耗时(毫秒)
    
            // 获取接口描述信息
            MethodSignature signature = (MethodSignature) joinPoint.getSignature();
            String description = signature.getMethod().getAnnotation(ApiOperation.class).value();// 方法描述
    
            String username = request.getParameter(AuthConstants.USER_NAME_KEY); // 登录用户名
            String date = startTime.format(DateTimeFormatter.ofPattern("yyyy-MM-dd")); // 索引名需要,因为默认生成索引的date时区不一致
    
            // 获取token
            String token = Strings.EMPTY;
            if (request != null) {
                JSONObject jsonObject = JSONUtil.parseObj(result);
                token = jsonObject.getStr("value");
            }
    
            String clientIP = IPUtils.getIpAddr(request);  // 客户端请求IP(注意:如果使用Nginx代理需配置)
            String region = IPUtils.getCityInfo(clientIP); // IP对应的城市信息
    
            // MDC 扩展logback字段,具体请看logback-spring.xml的自定义日志输出格式
            MDC.put("elapsedTime", StrUtil.toString(elapsedTime));
            MDC.put("description", description);
            MDC.put("region", region);
            MDC.put("username", username);
            MDC.put("date", date);
            MDC.put("token", token);
            MDC.put("clientIP", clientIP);
    
            log.info("{} 登录,耗费时间 {} 毫秒", username, elapsedTime); // 收集日志这里必须打印一条日志,内容随便吧,记录在message字段,具体看logback-spring.xml文件
            return result;
        }
    }
    
    

    2. Logback日志上传至LogStash

    代码坐标:common-web#logback-spring.xml

    <!-- Logstash收集登录日志输出到ElasticSearch  -->
    <appender name="LOGIN_LOGSTASH" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <destination>localhost:5044</destination>
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LoggingEventCompositeJsonEncoder">
            <providers>
                <timestamp>
                    <timeZone>Asia/Shanghai</timeZone>
                </timestamp>
                <!--自定义日志输出格式-->
                <pattern>
                    <pattern>
                        {
                        "project": "${APP_NAME}",
                        "date": "%X{date}", <!-- 索引名时区同步 -->
                        "action":"login",
                        "pid": "${PID:-}",
                        "thread": "%thread",
                        "message": "%message",
                        "elapsedTime": "%X{elapsedTime}",
                        "username":"%X{username}",
                        "clientIP": "%X{clientIP}",
                        "region":"%X{region}",
                        "token":"%X{token}",
                        "loginTime": "%date{"yyyy-MM-dd HH:mm:ss"}",
                        "description":"%X{description}"
                        }
                    </pattern>
                </pattern>
            </providers>
        </encoder>
        <keepAliveDuration>5 minutes</keepAliveDuration>
    </appender>
    
    <!-- additivity="true" 默认是true 会向上传递至root -->
    <logger name="com.youlai.common.web.aspect.LoginLogAspect" level="INFO" additivity="true">
        <appender-ref ref="LOGIN_LOGSTASH"/>
    </logger>
    
    • localhost:5044 Logstash配置的input收集数据的监听
    • %X{username} 输出MDC添加的username的值

    五. SpringBoot整合ElasticSearch客户端RestHighLevelClient

    1. pom依赖

    代码坐标: common-elasticsearch#pom.xml

    客户端的版本需和服务器的版本对应,这里也就是7.10.1

    <dependency>
        <groupId>org.elasticsearch.client</groupId>
        <artifactId>elasticsearch-rest-high-level-client</artifactId>
        <exclusions>
            <exclusion>
                <groupId>org.elasticsearch.client</groupId>
                <artifactId>elasticsearch-rest-client</artifactId>
            </exclusion>
    
            <exclusion>
                <artifactId>elasticsearch</artifactId>
                <groupId>org.elasticsearch</groupId>
            </exclusion>
        </exclusions>
    </dependency>
    
    <dependency>
        <groupId>org.elasticsearch</groupId>
        <artifactId>elasticsearch</artifactId>
        <version>7.10.1</version>
    </dependency>
    
    <dependency>
        <groupId>org.elasticsearch.client</groupId>
        <artifactId>elasticsearch-rest-client</artifactId>
        <version>7.10.1</version>
    </dependency>
    
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
    </dependency>
    

    2. yml 配置

    spring:
      elasticsearch:
        rest:
          uris: ["http://localhost:9200"]
          cluster-nodes:
            - localhost:9200
    

    3. RestHighLevelClientConfig 配置类

    代码坐标: common-elasticsearch#RestHighLevelClientConfig

    @ConfigurationProperties(prefix = "spring.elasticsearch.rest")
    @Configuration
    @AllArgsConstructor
    public class RestHighLevelClientConfig {
    
        @Setter
        private List<String> clusterNodes;
    
        @Bean
        public RestHighLevelClient restHighLevelClient() {
    
            HttpHost[] hosts = clusterNodes.stream()
                    .map(this::buildHttpHost) // eg: new HttpHost("127.0.0.1", 9200, "http")
                    .toArray(HttpHost[]::new);
            return new RestHighLevelClient(RestClient.builder(hosts));
        }
    
        private HttpHost buildHttpHost(String node) {
            String[] nodeInfo = node.split(":");
            return new HttpHost(nodeInfo[0].trim(), Integer.parseInt(nodeInfo[1].trim()), "http");
        }
    }
    
    

    4. RestHighLevelClient API封装

    代码坐标: common-elasticsearch#ElasticSearchService

    • 暂只简单封装实现需求里需要的几个方法,计数、去重计数、日期聚合统计、列表查询、分页查询、删除,后续可扩展...
    @Service
    @AllArgsConstructor
    public class ElasticSearchService {
    
        private RestHighLevelClient client;
    
        /**
         * 计数
         */
        @SneakyThrows
        public long count(QueryBuilder queryBuilder, String... indices) {
            // 构造请求
            CountRequest countRequest = new CountRequest(indices);
            countRequest.query(queryBuilder);
    
            // 执行请求
            CountResponse countResponse = client.count(countRequest, RequestOptions.DEFAULT);
            long count = countResponse.getCount();
            return count;
        }
    
        /**
         * 去重计数
         */
        @SneakyThrows
        public long countDistinct(QueryBuilder queryBuilder, String field, String... indices) {
            String distinctKey = "distinctKey"; // 自定义计数去重key,保证上下文一致
    
            // 构造计数聚合 cardinality:集合中元素的个数
            CardinalityAggregationBuilder aggregationBuilder = AggregationBuilders
                    .cardinality(distinctKey).field(field);
    
            // 构造搜索源
            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
            searchSourceBuilder.query(queryBuilder).aggregation(aggregationBuilder);
    
            // 构造请求
            SearchRequest searchRequest = new SearchRequest(indices);
            searchRequest.source(searchSourceBuilder);
    
            // 执行请求
            SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
            ParsedCardinality result = searchResponse.getAggregations().get(distinctKey);
            return result.getValue();
        }
    
        /**
         * 日期聚合统计
         *
         * @param queryBuilder 查询条件
         * @param field        聚合字段,如:登录日志的 date 字段
         * @param interval     统计时间间隔,如:1天、1周
         * @param indices      索引名称
         * @return
         */
        @SneakyThrows
        public Map<String, Long> dateHistogram(QueryBuilder queryBuilder, String field, DateHistogramInterval interval, String... indices) {
    
            String dateHistogramKey = "dateHistogramKey"; // 自定义日期聚合key,保证上下文一致
    
            // 构造聚合
            AggregationBuilder aggregationBuilder = AggregationBuilders
                    .dateHistogram(dateHistogramKey) //自定义统计名,和下文获取需一致
                    .field(field) // 日期字段名
                    .format("yyyy-MM-dd") // 时间格式
                    .calendarInterval(interval) // 日历间隔,例: 1s->1秒 1d->1天 1w->1周 1M->1月 1y->1年 ...
                    .minDocCount(0); // 最小文档数,比该值小就忽略
    
            // 构造搜索源
            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
            searchSourceBuilder
                    .query(queryBuilder)
                    .aggregation(aggregationBuilder)
                    .size(0);
    
            // 构造SearchRequest
            SearchRequest searchRequest = new SearchRequest(indices);
            searchRequest.source(searchSourceBuilder);
    
            searchRequest.indicesOptions(
                    IndicesOptions.fromOptions(
                            true, // 是否忽略不可用索引
                            true, // 是否允许索引不存在
                            true, // 通配符表达式将扩展为打开的索引
                            false // 通配符表达式将扩展为关闭的索引
                    ));
    
            // 执行请求
            SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
    
            // 处理结果
            ParsedDateHistogram dateHistogram = searchResponse.getAggregations().get(dateHistogramKey);
    
            Iterator<? extends Histogram.Bucket> iterator = dateHistogram.getBuckets().iterator();
    
            Map<String, Long> map = new HashMap<>();
            while (iterator.hasNext()) {
                Histogram.Bucket bucket = iterator.next();
                map.put(bucket.getKeyAsString(), bucket.getDocCount());
            }
            return map;
        }
    
        /**
         * 列表查询
         */
        @SneakyThrows
        public <T extends BaseDocument> List<T> search(QueryBuilder queryBuilder, Class<T> clazz, String... indices) {
            List<T> list = this.search(queryBuilder, null, 1, ESConstants.DEFAULT_PAGE_SIZE, clazz, indices);
            return list;
        }
    
        /**
         * 分页列表查询
         */
        @SneakyThrows
        public <T extends BaseDocument> List<T> search(QueryBuilder queryBuilder, SortBuilder sortBuilder, Integer page, Integer size, Class<T> clazz, String... indices) {
            // 构造SearchSourceBuilder
            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
            searchSourceBuilder.query(queryBuilder);
            searchSourceBuilder.sort(sortBuilder);
            searchSourceBuilder.from((page - 1) * size);
            searchSourceBuilder.size(size);
            // 构造SearchRequest
            SearchRequest searchRequest = new SearchRequest(indices);
            searchRequest.source(searchSourceBuilder);
            // 执行请求
            SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
            SearchHits hits = searchResponse.getHits();
            SearchHit[] searchHits = hits.getHits();
    
            List<T> list = CollectionUtil.newArrayList();
            for (SearchHit hit : searchHits) {
                T t = JSONUtil.toBean(hit.getSourceAsString(), clazz);
                t.setId(hit.getId()); // 数据的唯一标识
                t.setIndex(hit.getIndex());// 索引
                list.add(t);
            }
            return list;
        }
    
        /**
         * 删除
         */
        @SneakyThrows
        public boolean deleteById(String id, String index) {
            DeleteRequest deleteRequest = new DeleteRequest(index,id);
            DeleteResponse deleteResponse = client.delete(deleteRequest, RequestOptions.DEFAULT);
            return true;
        }
    }
    

    六. 后台接口

    在SpringBoot整合了ElasticSearch的高级客户端RestHighLevelClient,以及简单了封装方法之后,接下来就准备为前端提供统计数据、分页列表查询记录、根据ID删除记录接口了。

    1. 首页控制台

    首页控制台需要今日IP访问数,历史总IP访问数、近十天每天的登录次数统计,具体代码如下:

    代码坐标: youlai-admin#DashboardController

    @Api(tags = "首页控制台")
    @RestController
    @RequestMapping("/api.admin/v1/dashboard")
    @Slf4j
    @AllArgsConstructor
    public class DashboardController {
    
        ElasticSearchService elasticSearchService;
    
        @ApiOperation(value = "控制台数据")
        @GetMapping
        public Result data() {
            Map<String, Object> data = new HashMap<>();
    
            // 今日IP数
            long todayIpCount = getTodayIpCount();
            data.put("todayIpCount", todayIpCount);
    
            // 总IP数
            long totalIpCount = getTotalIpCount();
            data.put("totalIpCount", totalIpCount);
    
            // 登录统计
            int days = 10; // 统计天数
            Map loginCount = getLoginCount(days);
            data.put("loginCount", loginCount);
    
            return Result.success(data);
        }
    
        
        private long getTodayIpCount() {
            String date = LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd"));
            TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("date", date);
            String indexName = ESConstants.LOGIN_INDEX_PATTERN + date; //索引名称
            
            // 这里使用clientIP聚合计数,为什么加.keyword后缀呢?下文给出截图
            long todayIpCount = elasticSearchService.countDistinct(termQueryBuilder, "clientIP.keyword", indexName);
            return todayIpCount;
        }
    
        private long getTotalIpCount() {
            long totalIpCount = elasticSearchService.countDistinct(null, "clientIP.keyword", ESConstants.LOGIN_INDEX_PATTERN);
            return totalIpCount;
        }
    
        private Map getLoginCount(int days) {
    
            LocalDateTime now = LocalDateTime.now();
            DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd");
    
            String startDate = now.plusDays(-days).format(formatter);
            String endDate = now.format(formatter);
    
            String[] indices = new String[days]; // 查询ES索引数组
            String[] xData = new String[days]; // 柱状图x轴数据
            for (int i = 0; i < days; i++) {
                String date = now.plusDays(-i).format(formatter);
                xData[i] = date;
                indices[i] = ESConstants.LOGIN_INDEX_PREFIX + date;
            }
    
            // 查询条件,范围内日期统计
            RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("date").from(startDate).to(endDate);
            BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery()
                    .must(rangeQueryBuilder);
    
    
            // 总数统计
            Map<String, Long> totalCountMap = elasticSearchService.dateHistogram(
                    boolQueryBuilder,
                    "date", // 根据date字段聚合统计登录数 logback-spring.xml 中的自定义扩展字段 date
                    DateHistogramInterval.days(1),
                    indices);
    
            // 当前用户统计
            HttpServletRequest request = RequestUtils.getRequest();
            String clientIP = IPUtils.getIpAddr(request);
    
            boolQueryBuilder.must(QueryBuilders.termQuery("clientIP", clientIP));
            Map<String, Long> myCountMap = elasticSearchService.dateHistogram(boolQueryBuilder, "date", DateHistogramInterval.days(1), indices);
    
    
            // 组装echarts数据
            Long[] totalCount = new Long[days];
            Long[] myCount = new Long[days];
    
            Arrays.sort(xData);// 默认升序
            for (int i = 0; i < days; i++) {
                String key = xData[i];
                totalCount[i] = Convert.toLong(totalCountMap.get(key), 0l);
                myCount[i] = Convert.toLong(myCountMap.get(key), 0l);
            }
            Map<String, Object> map = new HashMap<>(4);
    
            map.put("xData", xData); // x轴坐标
            map.put("totalCount", totalCount); // 总数
            map.put("myCount", myCount); // 我的
    
            return map;
        }
    }
    
    • 聚合字段clientIP为什么添加.keyword后缀?

    2. 登录记录分页查询接口

    代码坐标: youlai-admin # LoginRecordController

    @Api(tags = "登录记录")
    @RestController
    @RequestMapping("/api.admin/v1/login_records")
    @Slf4j
    @AllArgsConstructor
    public class LoginRecordController {
    
        ElasticSearchService elasticSearchService;
    
        ITokenService tokenService;
    
        @ApiOperation(value = "列表分页")
        @ApiImplicitParams({
                @ApiImplicitParam(name = "page", value = "页码", defaultValue = "1", paramType = "query", dataType = "Long"),
                @ApiImplicitParam(name = "limit", value = "每页数量", defaultValue = "10", paramType = "query", dataType = "Long"),
                @ApiImplicitParam(name = "startDate", value = "开始日期", paramType = "query", dataType = "String"),
                @ApiImplicitParam(name = "endDate", value = "结束日期", paramType = "query", dataType = "String"),
                @ApiImplicitParam(name = "clientIP", value = "客户端IP", paramType = "query", dataType = "String")
        })
        @GetMapping
        public Result list(
                Integer page,
                Integer limit,
                String startDate,
                String endDate,
                String clientIP
        ) {
    
            // 日期范围
            RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("date");
    
            if (StrUtil.isNotBlank(startDate)) {
                rangeQueryBuilder.from(startDate);
            }
            if (StrUtil.isNotBlank(endDate)) {
                rangeQueryBuilder.to(endDate);
            }
    
            BoolQueryBuilder queryBuilder = QueryBuilders.boolQuery().must(rangeQueryBuilder);
    
            if (StrUtil.isNotBlank(clientIP)) {
                queryBuilder.must(QueryBuilders.wildcardQuery("clientIP", "*" + clientIP + "*"));
            }
            // 总记录数
            long count = elasticSearchService.count(queryBuilder, ESConstants.LOGIN_INDEX_PATTERN);
    
            // 排序
            FieldSortBuilder sortBuilder = new FieldSortBuilder("@timestamp").order(SortOrder.DESC);
    
            // 分页查询
            List<LoginRecord> list = elasticSearchService.search(queryBuilder, sortBuilder, page, limit, LoginRecord.class, ESConstants.LOGIN_INDEX_PATTERN);
    
            // 遍历获取会话状态
            list.forEach(item -> {
                String token = item.getToken();
                int tokenStatus = 0;
                if (StrUtil.isNotBlank(token)) {
                    tokenStatus = tokenService.getTokenStatus(item.getToken());
                }
                item.setStatus(tokenStatus);
            });
    
            return Result.success(list, count);
        }
    
    
        @ApiOperation(value = "删除登录记录")
        @ApiImplicitParam(name = "ids", value = "id集合", required = true, paramType = "query", dataType = "String")
        @DeleteMapping
        public Result delete(@RequestBody List<BaseDocument> documents) {
            documents.forEach(document -> elasticSearchService.deleteById(document.getId(), document.getIndex()));
            return Result.success();
        }
    
    }
    
    

    3. 强制下线接口

    代码坐标: youlai-admin#TokenController

    • 这里还是将JWT添加至黑名单,然后在网关限制被加入黑名单的JWT登录
    @Api(tags = "令牌接口")
    @RestController
    @RequestMapping("/api.admin/v1/tokens")
    @Slf4j
    @AllArgsConstructor
    public class TokenController {
    
        ITokenService tokenService;
    
        @ApiOperation(value = "强制下线")
        @ApiImplicitParam(name = "token", value = "访问令牌", required = true, paramType = "query", dataType = "String")
        @PostMapping("/{token}/_invalidate")
        @SneakyThrows
        public Result invalidateToken(@PathVariable String token) {
            boolean status = tokenService.invalidateToken(token);
            return Result.judge(status);
        }
    
    }
    

    代码坐标: youlai-admin#TokenServiceImpl

    @Override
    @SneakyThrows
    public boolean invalidateToken(String token) {
    
        JWTPayload payload = JWTUtils.getJWTPayload(token);
    
        // 计算是否过期
        long currentTimeSeconds = System.currentTimeMillis() / 1000;
        Long exp = payload.getExp();
        if (exp < currentTimeSeconds) { // token已过期,无需加入黑名单
            return true;
        }
        // 添加至黑名单使其失效
        redisTemplate.opsForValue().set(AuthConstants.TOKEN_BLACKLIST_PREFIX + payload.getJti(), null, (exp - currentTimeSeconds), TimeUnit.SECONDS);
        return true;
    }
    

    七. 前端界面

    项目前端源码:youlai-mall-admin,以下只贴出页面路径,有兴趣下载到本地查看源码和效果

    代码坐标: src/views/dashboard/common/components/LoginCountChart.vue

    • 登录次数统计、今日访问IP统计、总访问IP统计

    代码坐标: src/views/admin/record/login/index.vue

    • 登录信息,强制用户下线,演示的是自己强制自己下线的效果

    八. 问题

    1. 日志记录登录时间比正常时间晚了8个小时

    项目使用Docker部署,其中依赖openjdk镜像时区是UTC,比北京时间晚了8个小时,执行以下命令修改时区解决问题

    docker exec -it youlai-auth /bin/sh
    echo "Asia/Shanghai" > /etc/timezone
    docker restart youlai-auth
    

    2. 用Nginx代理转发,怎么获取用户的真实IP?

    在配置代理转发的时候添加:

    proxy_set_header X-Real-IP $remote_addr;
    proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
    

    九. Kibana索引检索

    在LogStash的logout我们指定了索引的名称 "%{[project]}-%{[action]}-%{+YYYY-MM-dd}"

    在logback-spring.xml指定了project为youlai-auth,action为login,替换生成类似youlai-auth-login-2021-3-25的索引,其中日期是可变的,然后我们在Kibana界面创建youlai-auth-login-*索引模式来对日志进行检索。

    • 创建youlai-auth-login-*索引模式

    • 根据索引模式,设置日期范围,进行登录日志的检索

    十. 结语

    至此,整个实战过程已经完成,搭建了ELK环境,使用Spring AOP横切来对登录日志的定点的搜集,最后通过SpringBoot整合ElasticSearch的高级Java客户端RestHighLevelClient来对搜集登录日志信息进行聚合计数、统计、以及日志中访问令牌操作来实现无状态的JWT会话管理,强制JWT失效让用户下线。文中只贴出关键的代码,其中还有像IP转地区的工具使用鉴于篇幅的原因并未一一说明,完整代码请参考git上的完整源代码。点击跳转

    希望大家通过本篇文章能够快速入门ElasticSearch,如果有问题欢迎留言或者加我微信(haoxianrui)。

    终. 附录

    欢迎大家加入开源项目有来项目交流群,一起学习Spring Cloud微服务生态组件、分布式、Docker、K8S、Vue、element-ui、uni-app等全栈技术。

    最后附上有来项目往期文章

    后台微服务

    1. Spring Cloud实战 | 第一篇:Windows搭建Nacos服务
    2. Spring Cloud实战 | 第二篇:Spring Cloud整合Nacos实现注册中心
    3. Spring Cloud实战 | 第三篇:Spring Cloud整合Nacos实现配置中心
    4. Spring Cloud实战 | 第四篇:Spring Cloud整合Gateway实现API网关
    5. Spring Cloud实战 | 第五篇:Spring Cloud整合OpenFeign实现微服务之间的调用
    6. Spring Cloud实战 | 第六篇:Spring Cloud Gateway+Spring Security OAuth2+JWT实现微服务统一认证授权
    7. Spring Cloud实战 | 最七篇:Spring Cloud Gateway+Spring Security OAuth2集成统一认证授权平台下实现注销使JWT失效方案
    8. Spring Cloud实战 | 最八篇:Spring Cloud +Spring Security OAuth2+ Vue前后端分离模式下无感知刷新实现JWT续期
    9. Spring Cloud实战 | 最九篇:Spring Security OAuth2认证服务器统一认证自定义异常处理
    10. Spring Cloud实战 | 第十篇 :Spring Cloud + Nacos整合Seata 1.4.1最新版本实现微服务架构中的分布式事务,进阶之路必须要迈过的槛
    11. Spring Cloud实战 | 第十一篇 :Spring Cloud Gateway网关实现对RESTful接口权限和按钮权限细粒度控制

    后台管理前端

    1. vue-element-admin实战 | 第一篇: 移除mock接入微服务接口,搭建SpringCloud+Vue前后端分离管理平台
    2. vue-element-admin实战 | 第二篇: 最小改动接入后台实现根据权限动态加载菜单

    微信小程序

    1. vue+uni-app商城实战 | 第一篇:从0到1快速开发一个商城微信小程序,无缝接入Spring Cloud OAuth2认证授权登录

    应用部署

    1. Docker实战 | 第一篇:Linux 安装 Docker
    2. Docker实战 | 第二篇:Docker部署nacos-server:1.4.0
    3. Docker实战 | 第三篇:IDEA集成Docker插件实现一键自动打包部署微服务项目,一劳永逸的技术手段值得一试
    4. Docker实战 | 第四篇:Docker安装Nginx,实现基于vue-element-admin框架构建的项目线上部署
    5. Docker实战 | 第五篇:Docker启用TLS加密解决暴露2375端口引发的安全漏洞,被黑掉三台云主机的教训总结
  • 相关阅读:
    测开之路一百一十:bootstrap图片
    测开之路一百零九:bootstrap列表
    测开之路一百零八:bootstrap表格
    测开之路一百零七:bootstrap排版
    测开之路一百零六:bootstrap布局
    学生管理之原生分页方法
    Ajax文件上传三式
    学生管理之模板继承
    Django之Models的class Meta
    [C++]指针/指针数组/数组指针/多维指针/单值指针/多值指针
  • 原文地址:https://www.cnblogs.com/haoxianrui/p/14596252.html
Copyright © 2011-2022 走看看