zoukankan      html  css  js  c++  java
  • Noisy Channel模型纠正单词拼写错误

    本文介绍 Stanford《From Languages to Information》课程中讲到的 单词拼写错误 纠正。背后的数学原理主要是贝叶斯公式。单词拼写错误纠正主要涉及到两个模型:一个是Nosiy Channel模型,它是贝叶斯公式中的似然函数;另一个模型是Language Model,它是贝叶斯公式中的先验概率。

    一,问题描述

    在这句话中“. . . was called a “stellar and versatile acress whose combination of sass and glamour has defined her. . .”,有一个错误的单词:acress 

    这个错误单词 acress 对应的 正确单词是哪个呢?是 actress? 还是cress?还是 caress?……

    二,出现单词拼写错误的情形

    一种是 Non-word spelling errors,它是指:错误的单词 不存在 于词典中。也就说,你键盘输入了一个单词,而这个单词根本没有被英文词典收录,在字典中查不到。比如你将 正确的单词graffe,多打了一个字符 i ,变成了 giraffe,而 英文字典中根本没有 giraffe这个单词。

    另一种是 real-word errors,比如:想输入 there are,结果输入成了 three are。而错误单词 three 是存在于字典中的,关键问题是:怎么知道将 three 改成 there 呢?

    三,单词拼写错误的纠正步骤

    ①首先检测出 是哪个单词发生了拼写错误。

    这可以通过查字典来实现,比如依次扫描每个单词,若该单词不在词典中(未被词典收录),则认为它是一个拼写错误的单词。显然,词典越大,词典收录的单词越多,我们就越能正确检测出错误的单词。

    ②其次,是要从一组候选的 正确单词中,选择一个“最准确”的单词,而这个“最准确”的单词,就是要找的结果(错误单词 对应的 正确单词)。 

    这里有个问题就是:如何找出一组候选的正确单词呢?这就需要根据实际情况进行分析了。以上面提到的错误单词 acress 为例:

    本来想输入“across”,但是一不小心将 'o',输入成了'e',结果变成了 "acress", 这是substition 操作:将 'o' 替换成了 'e'

    本来想输入 "actress",但是打字太快,漏打了 't',结果变成了"acress",这是deletion操作:删除了 't'

    .....

    或者说:键盘上字符'm' 和 'n' 很近,打字时,很容易将 'm'替换成了'n';又或者说:'m' 和 'n'发音相似,也导致经常将 'm' 替换成 'n' 

    而寻找一组候选单词,就可以通过“编辑距离算法”来实现。关于编辑距离,可参考“Damerau-Levenshtein Edit Distance”或者:最短编辑距离算法实现

     

    四,贝叶斯推断 纠正 单词拼写错误

    ①Noisy Channel Model

    Noisy Channel Model的示意图如下:

    原来的一个正确的单词:经过 noisy channel ,结果变成了一个 noisy word。而这个noisy channel,其实就是前面讲的“两个词发音相近,容易拼错它们",或者"两个字符在键盘上相邻,输入时就会错误地将一个词 输入成了(type) 另一个词。(其实niosy channel就是对现实世界存在的问题的一个建模)

    而要想得出错误单词(noisy word) 对应的 正确单词,就需要用到贝叶斯推断。具体原理如下:

    既然 noisy word (或者说错误单词,记为 x )已经出现了,那么我们在词典中找一个单词w,在 x 已经出现的条件下,最有可能是由 哪个单词w 造成的?

    We see an observation x (a misspelled word) and our job is to find the word w that generated this misspelled word
    Out of all possible words in the vocabulary V we want to find the
    word w such that P(w|x) is highest. We use the hat notation ˆ to mean “our estimate
    of the correct word”.

    用公式(1)表示如下:

    (公式1)

    V是词典(Vocabulary),p(w|x)表示:从V中选出一个w,计算概率 P(w|x),概率最大的那个 w,就是 错误单词x 对应的正确单词,将该正确单词记为: wˆ

     根据贝叶斯公式法则(公式2):

    将公式(1)变成如下形式:

    (公式3)

    从公式3 可以看出:就是对于 词典V 中的每个单词w,计算 [p(x|w)*p(w)]/p(x),找出 计算结果最大(概率最大) 的那个 w,该 w 就是最优解 wˆ 

    而在这个计算过程中,可以不需要计算分母p(x),因为这不影响我们 找出 概率最大的那个 w 。因此将 p(x) 视为一个常量值。(这里关于贝叶斯的理解,可参考后面给出的参考文献)

    于是我们的公式就变成了:

    (公式4)

    可以看出,公式4 由两部分组成,一部分是 p(x|w),我们称之为 channel model 或者 称为 error model,它就是似然函数

    另一部分是 p(w) 我们称之为先验概率(prior)。

    另外,值得一提的是这个Vocabulary V,由于Vocabulary中单词个数是很多的,只有在发生某种”条件“的情况下,一个单词才会被误拼写成了另一个单词。换句话说,Vocabulary中的某些词与错误单词 x 之间是”八杆子打不着“的关系,因此我们只在某些Candidate words 中 寻找 [p(x|w)*p(w)] 的那个 w

    而这些Candidate words 就是由前面提到的”编辑距离算法“生成。因此,公式可继续变成(注意 argmax 的下标的变化。V变成了C,而C就是 Candidate words的集合)

    因此,现在的问题变成了:如何求出channel model 和 prior呢?

    首先介绍下先验概率p(w)的求解(Prior)

    我们使用 unigram language model 来作为 p(w)。这里解释一下 unigram language model:

    选择一个语料库(词库),这个语料库里面总共有 404253213个单词,然后”编辑距离“算法 根据 错误的单词 acress 生成了一系列的候选词(Candidate words),每一个候选词在语料库中出现的次数count(candidate word) 除以 404253213 就是每个Candidate word的先验概率。如下图所示,第一列是错误单词acress的 候选词,第二列是这些候选词在语料库中出现的次数,第三列是这些候选词在语料库中出现的概率(频率)

    For this example let’s start in the following table by assuming a unigram language model. We computed the language model from the
    404,253,213 words in the Corpus of Contemporary English (COCA).

    接下来是求解 channel model

    个人理解就是:求解channel model需要用到日常生活中用到的知识经验,或者行业应用中累积下来的数据(经验)。

    从公式:p(x|w)理解上来看,给定一个正确的候选单词 w 的条件下,导致错误单词x 的概率有多大?

    如果我们收集了足够多的数据,比如观察了很多用户一共输入了(打字)1万次 w,其中有10次 输入成了x(打字打成了 x),那么 p(x|w)=0.0001

    我们考虑四种出错情况:

    del[x,y] 表示,输入 xy 时,少打了字符 'y',结果变成了 x,那么最终得到的单词是一个错误的单词,记录下这种情况下出错的总次数 count(xy typed as x)

    trans[x,y]表示,输入 xy 时,输入反了,变成了 yx,那么最终得到的单词是一个错误的单词,记录下这种情况下出错的总次数 count(xy typed as yx)

    把这些数据统计起来,放在一个表里面,这个表称为:confusion matrix

    比如这个网站(Corpora of misspellings for download)就有一系列的”错误单词的统计数据“。

    ("错误单词" 示意图)

    那么根据 confusion matrix,就能计算 似然函数的概率了(也即能求解 channel model 了)

    解释一下 if transposition情况:

    count[wi wi+1]表示:含有 wi wi+1 字符的所有单词w 的个数;trans[wi ,wi+1 ] 表示,将 wi 与 wi+1 交换的次数。(将wi 与 wi+1  交换后,就变成了一个错误的单词了)

    另一种计算 confusion matrix 的方法是 EM算法,这个我也没学,不懂,就不说了。

    对于错误的单词 acress,根据下面的7个候选单词计算出来的似然概率如下图:

    上图中,第一行表示,其中一个正确的候选单词是 actress,正确的单词是 t,由于某种原因(键盘输入太快了,漏打了t,本来是输入ct 的,结果输入成了c ),统计到的这种情形出现的概率是0.000117 。这种原因,其实就是一个deleteion操作而导致的错误。

    现在计算出了 似然概率,也计算出了先验概率,二者相乘:p(x|w)*p(w),就得出了正确的候选单词 actress 由于deletion 操作导致 得到错误单词 acress 的概率是 0.000117

    同理,计算其它的候选单词 cress、caress、access……的 p(x|w)*p(w)概率,比较一下,哪个概率最大,从上图中看出:across 对应的概率最大,也就是说:应该将 acress 纠正为:across 

    但是,事实上,从句子”“的意思来看,acress 应该纠正为 actress 更为合理。那上而的channel model 为什么没有给出正确的纠正结果呢?

    主要原因是:先验概率是由 unigram language model 得出的,如果采用 bigram language model,那么就能够正确地找出”actress“,从而将acress纠正为actress

    下面是使用Contemporary American English语料库训练得到的二元Language Model。对于单词w:actress 和 across,它给出的先验概率p(w)如下:

    actress对应的先验概率:p(actress)=p("versatile actress whose")=0.000021*0.0010

    across对应的先验概率:p(across)=1*10-10

    这样,再将先验概率和似然概率相乘,就能得到正确的单词应该是”actress“,而不是”across“了。

    参考文章:

    Natural Language Corpus Data: Beautiful Data

    Corpora of misspellings for download

    理解贝叶斯公式的一系列文章 或者 推荐《A first course in machine learning 》这本书

    机器学习中的贝叶斯方法---先验概率、似然函数、后验概率的理解及如何使用贝叶斯进行模型预测(1)

    机器学习中的贝叶斯方法---先验概率、似然函数、后验概率的理解及如何使用贝叶斯进行模型预测(2)

    使用最大似然法来求解线性模型(2)-为什么是最大化似然函数?

    使用最大似然法来求解线性模型(3)-求解似然函数

    使用最大似然法来求解线性模型(4)-最大化似然函数背后的数学原理

     NLP里面的一些基本概念

    原文:http://www.cnblogs.com/hapjin/p/8012069.html

  • 相关阅读:
    Jquery-EasyUI学习2~
    IIS——发布网站
    一致性哈希算法
    利用ZTree链接数据库实现 [权限管理]
    Form表单提交的简要方式
    Redis学习之5种数据类型操作、实现原理及应用场景
    redis对比其余数据库
    ZooKeeper概述(转)
    Zookeeper-Zookeeper可以干什么
    Java内存分配及变量存储位置实例讲解
  • 原文地址:https://www.cnblogs.com/hapjin/p/8012069.html
Copyright © 2011-2022 走看看